×

Oxygen as a critical determinant of bone fracture healing – A multiscale model. (English) Zbl 1314.92040

Summary: A timely restoration of the ruptured blood vessel network in order to deliver oxygen and nutrients to the fracture zone is crucial for successful bone healing. Indeed, oxygen plays a key role in the aerobic metabolism of cells, in the activity of a myriad of enzymes as well as in the regulation of several (angiogenic) genes. In this paper, a previously developed model of bone fracture healing is further improved with a detailed description of the influence of oxygen on various cellular processes that occur during bone fracture healing. Oxygen ranges of the cell-specific oxygen-dependent processes were established based on the state-of-the art experimental knowledge through a rigorous literature study. The newly developed oxygen model is compared with previously published experimental and in silico results. An extensive sensitivity analysis was also performed on the newly introduced oxygen thresholds, indicating the robustness of the oxygen model. Finally, the oxygen model was applied to the challenging clinical case of a critical sized defect (3mm) where it predicted the formation of a fracture non-union. Further model analyses showed that the harsh hypoxic conditions in the central region of the callus resulted in cell death and disrupted bone healing thereby indicating the importance of a timely vascularization for the successful healing of a large bone defect. In conclusion, this work demonstrates that the oxygen model is a powerful tool to further unravel the complex spatiotemporal interplay of oxygen delivery, diffusion and consumption with the several healing steps, each occurring at distinct, optimal oxygen tensions during the bone repair process.

MSC:

92C30 Physiology (general)
92C35 Physiological flow

Software:

ROWMAP
Full Text: DOI

References:

[1] Bailon-Plaza, A.; van der Meulen, M. C., A mathematical framework to study the effects of growth factor influences on fracture healing, J. Theor. Biol., 212, 191-209 (2001)
[2] Barnes, G. L.; Kostenuik, P. J.; Gerstenfeld, L. C.; Einhorn, T. A., Growth factor regulation of fracture repair, J. Bone Miner. Res., 14, 1805-1815 (1999)
[3] Bentley, K.; Gerhardt, H.; Bates, P. A., Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation, J. Theor. Biol., 250, 25-36 (2008)
[4] Bouletreau, P. J.; Warren, S. M.; Spector, J. A.; Peled, Z. M.; Gerrets, R. P.; Greenwald, J. A.; Longaker, M. T., Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing, Plast. Reconstruct. Surg., 109, 2384-2397 (2002)
[5] Brandl, A.; Hartmann, A.; Bechmann, V.; Graf, B.; Nerlich, M.; Angele, P., Oxidative stress induces senescence in chondrocytes, J. Orthop. Res., 29, 1114-1120 (2011)
[6] Brighton, C. T.; Krebs, A. G., Oxygen-tension of healing fractures in rabbit, J. Bone Joint Surg.-Am. Vol. A, 54 (1972), (323-&)
[7] Brighton, C. T.; Schaffer, J. L.; Shapiro, D. B.; Tang, J. J.S; Clark, C. C., Proliferation and macromolecular-synthesis by rat calvarial bone-cells grown in various oxygen-tensions, J. Orthop. Res., 9, 847-854 (1991)
[8] Brinker, M. R.; Bailey, D. E., Fracture healing in tibia fractures with an associated vascular injury, J. Trauma-Inj. Infect. Crit. Care, 42, 11-19 (1997)
[9] Bruder, S. P.; Fox, B. S., Tissue engineering of bone: cell based strategies, Clin. Orthop. Rel. Res., S68-S83 (1999)
[10] Burke, D. P.; Kelly, D. J., Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model, PLoS One, 7, e40737 (2012)
[11] Cameron, J.; Milner, D.; Lee, J.; Cheng, J.; Fang, N.; Jasiuk, I., Employing the biology of successful fracture repair to heal critical size bone defects, (Heber-Katz, E.; Stocum, D. L., New Perspectives in Regeneration (2013)), 113-132
[12] Carlier, A.; Geris, L.; Bentley, K.; Carmeliet, G.; Carmeliet, P.; Van, O. H., MOSAIC: a multiscale model of osteogenesis and sprouting angiogenesis with lateral inhibition of endothelial cells, PLoS Comput. Biol., 8, e1002724 (2012)
[13] Chae, H. J.; Kim, S. C.; Han, K. S.; Chae, S. W.; An, N. H.; Kim, H. M.; Kim, H. H.; Lee, Z. H.; Kim, H. R., Hypoxia induces apoptosis by caspase activation accompanying cytochrome C release from mitochondria in MC3T3E1 osteoblasts. p38 MAPK is related in hypoxia-induced apoptosis, Immunopharmacol. Immunotoxicol., 23, 133-152 (2001)
[14] Cheema, U.; Brown, R. A.; Alp, B.; MacRobert, A. J., Spatially defined oxygen gradients and vascular endothelial growth factor expression in an engineered 3D cell model, Cell. Mol. Life Sci., 65, 177-186 (2008)
[15] Chen, G.; Niemeyer, F.; Wehner, T.; Simon, U.; Schuetz, M. A.; Pearcy, M. J.; Claes, L. E., Simulation of the nutrient supply in fracture healing, J. Biomech., 42, 2575-2583 (2009)
[16] Cho, T. J.; Gerstenfeld, L. C.; Einhorn, T. A., Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing, J. Bone Miner. Res., 17, 513-520 (2002)
[17] Cochran, D. M.; Fukumura, D.; Ancukiewicz, M.; Carmeliet, P.; Jain, R. K., Evolution of oxygen and glucose concentration profiles in a tissue-mimetic culture system of embryonic stem cells, Ann. Biomed. Eng., 34, 1247-1258 (2006)
[18] Colnot, C., Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration, J. Bone Miner. Res., 24, 274-282 (2009)
[19] De Bock, K.; Georgiadou, M.; Schoors, S.; Kuchnio, A.; Wong, B. W.; Cantelmo, A. R.; Quaegebeur, A.; Ghesquiere, B.; Cauwenberghs, S.; Eelen, G.; Phng, L. K.; Betz, I.; Tembuyser, B.; Brepoels, K.; Welti, J.; Geudens, I.; Segura, I.; Cruys, B.; Bifari, F.; Decimo, I.; Blanco, R.; Wyns, S.; Vangindertael, J.; Rocha, S.; Collins, R. T.; Munck, S.; Daelemans, D.; Imamura, H.; Devlieger, R.; Rider, M.; Van Veldhoven, P. P.; Schuit, F.; Bartrons, R.; Hofkens, J.; Fraisl, P.; Telang, S.; DeBerardinis, R. J.; Schoonjans, L.; Vinckier, S.; Chesney, J.; Gerhardt, H.; Dewerchin, M.; Carmeliet, P., Role of PFKFB3- driven glycolysis in vessel sprouting, Cell, 154, 651-663 (2013)
[20] Demol, J.; Lambrechts, D.; Geris, L.; Schrooten, J.; Van, O. H., Towards a quantitative understanding of oxygen tension and cell density evolution in fibrin hydrogels, Biomaterials, 32, 107-118 (2011)
[21] Deschepper, M.; Oudina, K.; David, B.; Myrtil, V.; Collet, C.; Bensidhoum, M.; Logeart-Avramoglou, D.; Petite, H., Survival and function of mesenchymal stem cells (MSCs) depend on glucose to overcome exposure to long-term, severe and continuous hypoxia, J. Cell Mol. Med., 15, 1505-1514 (2011)
[22] Dimitriou, R.; Jones, E.; McGonagle, D.; Giannoudis, P. V., Bone regeneration: current concepts and future directions, BMC Med., 9, 66 (2011)
[23] Dimitriou, R.; Tsiridis, E.; Giannoudis, P. V., Current concepts of molecular aspects of bone healing, Injury-Int. J. Care Injured, 36, 1392-1404 (2005)
[24] Drosse, I.; Volkmer, E.; Seitz, S.; Seitz, H.; Penzkofer, R.; Zahn, K.; Matis, U.; Mutschler, W.; Augat, P.; Schieker, M., Validation of a femoral critical size defect model for orthotopic evaluation of bone healing: a biomechanical, veterinary and trauma surgical perspective, Tissue Eng. Part C—Methods, 14, 79-88 (2008)
[25] Einhorn, T. A., The cell and molecular biology of fracture healing, Clin. Orthop. Rel. Res., S7-S21 (1998)
[26] Epari, D. R.; Lienau, J.; Schell, H.; Witt, F.; Duda, G. N., Pressure, oxygen tension and temperature in the periosteal callus during bone healing: an in vivo study in sheep, Bone, 43, 734-739 (2008)
[27] Fermor, B.; Urban, J.; Murray, D.; Pocock, A.; Lim, E.; Francis, M.; Gage, J., Proliferation and collagen synthesis of human anterior cruciate ligament cells in vitro: effects of ascorbate-2-phosphate, dexamethasone and oxygen tension, Cell Biol. Int., 22, 635-640 (1998)
[28] Fraisl, P.; Mazzone, M.; Schmidt, T.; Carmeliet, P., Regulation of angiogenesis by oxygen and metabolism, Dev. Cell, 16, 167-179 (2009)
[29] Geris, L.; Gerisch, A.; Sloten, J. V.; Weiner, R.; Oosterwyck, H. V., Angiogenesis in bone fracture healing: a bioregulatory model, J. Theor. Biol., 251, 137-158 (2008) · Zbl 1397.92126
[30] Geris, L.; Reed, A. A.; Vander, S. J.; Simpson, A. H.; Van, O. H., Occurrence and treatment of bone atrophic non-unions investigated by an integrative approach, PLoS Comput. Biol., 6, e1000915 (2010)
[31] Geris, L.; Vander, S. J.; Van, O. H., In silico biology of bone modelling and remodelling: regeneration, Philos. Transact. A Math. Phys. Eng. Sci., 367, 2031-2053 (2009)
[32] Gerisch, A.; Chaplain, M. A.J., Robust numerical methods for taxis-diffusion-reaction systems: applications to biomedical problems, Math. Comput. Modell., 43, 49-75 (2006) · Zbl 1086.92025
[33] Gerstenfeld, L. C.; Cullinane, D. M.; Barnes, G. L.; Graves, D. T.; Einhorn, T. A., Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation, J. Cell. Biochem., 88, 873-884 (2003)
[34] Gerstenfeld, L. C.; Cullinane, D. M.; Barnes, G. L.; Graves, D. T.; Einhorn, T. A., Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation, J. Cell Biochem., 88, 873-884 (2003)
[35] Grayson, W. L.; Zhao, F.; Bunnell, B.; Ma, T., Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells, Biochem. Biophys. Res. Commun., 358, 948-953 (2007)
[36] Grimshaw, M. J.; Mason, R. M., Bovine articular chondrocyte function in vitro depends upon oxygen tension, Osteoarthritis Cartilage, 8, 386-392 (2000)
[37] Hansen-Algenstaedt, N.; Joscheck, C.; Wolfram, L.; Schaefer, C.; Muller, I.; Bottcher, A.; Deuretzbacher, G.; Wiesner, L.; Leunig, M.; Algenstaedt, P.; Ruther, W., Sequential changes in vessel formation and microvascular function during bone repair, Acta Orthop., 77, 429-439 (2006)
[38] Harrison, L. J.; Cunningham, J. L.; Stromberg, L.; Goodship, A. E., Controlled induction of a pseudarthrosis: a study using a rodent model, J. Orthop. Trauma, 17, 11-21 (2003)
[39] Harry, L. E.; Sandison, A.; Pearse, M. F.; Paleolog, E. M.; Nanchahal, J., Comparison of the vascularity of fasciocutaneous tissue and muscle for coverage of open tibial fractures, Plast. Reconstructive Surg., 124, 1211-1219 (2009)
[40] Henrotin, Y.; Kurz, B.; Aigner, T., Oxygen and reactive oxygen species in cartilage degradation: friends or foes?, Osteoarthritis Cartilage, 13, 643-654 (2005)
[41] Hirao, M.; Tamai, N.; Tsumaki, N.; Yoshikawa, H.; Myoui, A., Oxygen tension regulates chondrocyte differentiation and function during endochondral ossification, J. Biol. Chem., 281, 31079-31092 (2006)
[42] Hojo, H.; Ohba, S.; Taniguchi, K.; Shirai, M.; Yano, F.; Saito, T.; Ikeda, T.; Nakajima, K.; Komiyama, Y.; Nakagata, N.; Suzuki, K.; Mishina, Y.; Yamada, M.; Konno, T.; Takato, T.; Kawaguchi, H.; Kambara, H.; Chung, U., Hedgehog-Gli activators direct osteo-chondrogenic function of bone morphogenetic protein toward osteogenesis in the perichondrium, J. Biol. Chem., 288, 9924-9932 (2013)
[43] Holzwarth, C.; Vaegler, M.; Gieseke, F.; Pfister, S. M.; Handgretinger, R.; Kerst, G.; Muller, I., Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells, BMC Cell Biol., 11 (2010)
[44] Isaksson, H., Recent advances in mechanobiological modeling of bone regeneration, Mech. Res. Commun., 42, 22-31 (2012)
[45] Isaksson, H.; Wilson, W.; van Donkelaar, C. C.; Huiskes, R.; Ito, K., Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing, J. Biomech., 39, 1507-1516 (2006)
[46] Ji, J. W.; Tsoukias, N. M.; Goldman, D.; Popel, A. S., A computational model of oxygen transport in skeletal muscle for sprouting and splitting modes of angiogenesis, J. Theor. Biol., 241, 94-108 (2006) · Zbl 1447.92075
[47] Kanichai, M.; Ferguson, D.; Prendergast, P. J.; Campbell, V. A., Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: a role for AKT and hypoxia-inducible factor (HIF)-1 alpha, J. Cell. Physiol., 216, 708-715 (2008)
[48] Komarova, S. V.; Ataullakhanov, F. I.; Globus, R. K., Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts, Am. J. Physiol.-Cell Physiol., 279, C1220-C1229 (2000)
[49] Komatsu, D. E.; Hadjiargyrou, M., Activation of the transcription factor HIF-1 and its target genes, VEGF, HO-1, iNOS, during fracture repair, Bone, 34, 680-688 (2004)
[50] Kubo, S.; Cooper, G. M.; Matsumoto, T.; Phillippi, J. A.; Corsi, K. A.; Usas, A.; Li, G. H.; Fu, F. H.; Huard, J., Blocking vascular endothelial growth factor with soluble Flt-1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells, Arthritis Rheumatism, 60, 155-165 (2009)
[51] Kwon, S. H.; Lee, T. J.; Park, J.; Hwang, J. E.; Jin, M.; Jang, H. K.; Hwang, N. S.; Kim, B. S., Modulation of BMP-2- induced chondrogenic versus osteogenic differentiation of human mesenchymal stem cells by cell-specific extracellular matrices, Tissue Eng. Part A, 19, 49-58 (2013)
[52] Lacroix, D.; Prendergast, P. J., A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading, J. Biomech., 35, 1163-1171 (2002)
[53] Lennon, D. P.; Edmison, J. M.; Caplan, A. I., Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis, J. Cell Physiol., 187, 345-355 (2001)
[54] Lissenberg-Thunnissen, S. N.; de Gorter, D. J.; Sier, C. F.; Schipper, I. B., Use and efficacy of bone morphogenetic proteins in fracture healing, Int. Orthop., 35, 1271-1280 (2011)
[55] Liu, G.; Qutub, A. A.; Vempati, P.; Mac Gabhann, F.; Popel, A. S., Module-based multiscale simulation of angiogenesis in skeletal muscle, Theor. Biol. Med. Modell., 8 (2011)
[56] Lu, C. Y.; Miclau, T.; Hu, D.; Marcucio, R. S., Ischemia leads to delayed union during fracture healing: a mouse model, J. Orthop. Res., 25, 51-61 (2007)
[57] Lu, C. Y.; Saless, N.; Wang, X. D.; Sinha, A.; Decker, S.; Kazakia, G.; Hou, H. G.; Williams, B.; Swartz, H. M.; Hunt, T. K.; Miclau, T.; Marcucio, R. S., The role of oxygen during fracture healing, Bone, 52, 220-229 (2013)
[58] Lu, C. Y.; Saless, N.; Wang, X. D.; Sinha, A.; Decker, S.; Kazakia, G.; Hou, H. G.; Williams, B.; Swartz, H. M.; Hunt, T. K.; Miclau, T.; Marcucio, R. S., The role of oxygen during fracture healing, Bone, 52, 220-229 (2013)
[59] Macdouga, JD; Mccabe, M., Diffusion coefficient of oxygen through tissues, Nature, 215 (1967), (1173-&)
[60] Maes, C.; Carmeliet, G.; Schipani, E., Hypoxia-driven pathways in bone development, regeneration and disease, Nat. Rev. Rheumatol., 8, 358-366 (2012)
[61] Malda, J.; Rouwkema, J.; Martens, D. E.; le Comte, E. P.; Kooy, F. K.; Tramper, J.; van Blitterswijk, C. A.; Riesle, J., Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: measurement and modeling, Biotechnol. Bioeng., 86, 9-18 (2004)
[62] Malda, J.; Rouwkema, J.; Martens, D. E.; le Comte, E. P.; Kooy, F. K.; Tramper, J.; van Blitterswijk, C. A.; Riesle, J., Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: measurement and modeling, Biotechnol. Bioeng., 86, 9-18 (2004)
[63] Malladi, P.; Xu, Y.; Chiou, M.; Giaccia, A. J.; Longaker, M. T., Effect of reduced oxygen tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cells, Am. J. Physiol.-Cell Physiol., 290, C1139-C1145 (2006)
[64] Marsh, D., Concepts of fracture union, delayed union, and nonunion, Clin. Orthop. Relat Res., S22-S30 (1998)
[65] Masquelet, A. C., Muscle reconstruction in reconstructive surgery: soft tissue repair and long bone reconstruction, Langenbecks Arch. Surg., 388, 344-346 (2003)
[66] McDougall, S. R.; Anderson, A. R.A.; Chaplain, M. A.J.; Sherratt, J. A., Mathematical modelling of flow through vascular networks: implications for ibmour-induced angiogenesis and chemotherapy strategies, Bull. Math. Biol., 64, 673-702 (2002) · Zbl 1334.92106
[67] Merceron, C.; Vinatier, C.; Portron, S.; Masson, M.; Amiaud, J.; Guigand, L.; Cherel, Y.; Weiss, P.; Guicheux, J., Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells, Am. J. Physiol.-Cell Physiol., 298, C355-C364 (2010)
[68] Mertens, S.; Noll, T.; Spahr, R.; Krutzfeldt, A.; Piper, H. M., Energetic response of coronary endothelial-cells to hypoxia, Am. J. Physiol., 258, H689-H694 (1990)
[69] Meyer, E. G.; Buckley, C. T.; Thorpe, S. D.; Kelly, D. J., Low oxygen tension is a more potent promoter of chondrogenic differentiation than dynamic compression, J. Biomech., 43, 2516-2523 (2010)
[70] Murao, H.; Yamamoto, K.; Matsuda, S.; Akiyama, H., Periosteal cells are a major source of soft callus in bone fracture, J. Bone Miner. Metab., 1-9 (2013)
[71] Nicolaije, C.; Koedam, M.; van Leeuwen, J. P., Decreased oxygen tension lowers reactive oxygen species and apoptosis and inhibits osteoblast matrix mineralization through changes in early osteoblast differentiation, J. Cell Physiol., 227, 1309-1318 (2012)
[72] Papandreou, I.; Cairns, R. A.; Fontana, L.; Lim, A. L.; Denko, N. C., HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption, Cell Metab., 3, 187-197 (2006)
[73] Patterson, T. E.; Kumagai, K.; Griffith, L.; Muschler, G. F., Cellular strategies for enhancement of fracture repair, J. Bone Joint Surg.-Am. Vol., 90A, 111-119 (2008)
[74] Peiffer, V.; Gerisch, A.; Vandepitte, D.; Van, O. H.; Geris, L., A hybrid bioregulatory model of angiogenesis during bone fracture healing, Biomech. Model. Mechanobiol., 10, 383-395 (2011)
[75] Peters, K.; Kamp, G.; Berz, A.; Unger, R. E.; Barth, S.; Salamon, A.; Rychly, J.; Kirkpatrick, C. J., Changes in human endothelial cell energy metabolic capacities during in vitro cultivation. The role of “aerobic glycolysis” and proliferation, Cell. Physiol. Biochem., 24, 483-492 (2009)
[76] Pivonka, P.; Dunstan, C. R., Role of mathematical modeling in bone fracture healing, BoneKEy Rep., 1 (2012)
[77] Potier, E.; Ferreira, E.; Meunier, A.; Sedel, L.; Logeart-Avramoglou, D.; Petite, H., Prolonged hypoxia concomitant with serum deprivation induces massive human mesenchymal stem cell death, Tissue Eng., 13, 1325-1331 (2007)
[78] Prendergast, P. J.; Huiskes, R.; Soballe, K., Biophysical stimuli on cells during tissue differentiation at implant interfaces, J. Biomech., 30, 539-548 (1997)
[79] Pugh, C. W.; Ratcliffe, P. J., Regulation of angiogenesis by hypoxia: role of the HIF system, Nat. Med., 9, 677-684 (2003)
[80] Qutub, A. A.; Popel, A. S., Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting, BMC Sys. Biol., 3 (2009)
[81] Ren, H. Y.; Cao, Y.; Zhao, Q. J.; Li, J.; Zhou, C. X.; Liao, L. M.; Jia, M. Y.; Zhao, Q.; Cai, H. G.; Han, Z. C.; Yang, R. C.; Chen, G. Q.; Zhao, R. C.H, Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions, Biochem. Biophys. Res. Commun., 347, 12-21 (2006)
[82] Roberts, T. T.; Rosenbaum, A. J., Bone grafts, bone substitutes and orthobiologics The bridge between basic science and clinical advancements in fracture healing, Organogenesis, 8, 114-124 (2012)
[83] Rumsey, W. L.; Schlosser, C.; Nuutinen, E. M.; Robiolio, M.; Wilson, D. F., Cellular energetics and the oxygen dependence of respiration in cardiac myocytes isolated from adult-rat, J. Biol. Chem., 265, 15392-15399 (1990)
[84] Simon, U.; Augat, P.; Utz, M.; Claes, L., A numerical model of the fracture healing process that describes tissue development and revascularisation, Comput. Methods Biomech. Biomed. Eng., 14, 79-93 (2011)
[85] Stevens, M. M., Biomaterials for bone tissue engineering, Mat. Today, 11, 18-25 (2008)
[86] Street, J.; Bao, M.; deGuzman, L.; Bunting, S.; Peale, F. V.; Ferrara, N.; Steinmetz, H.; Hoeffel, J.; Cleland, J. L.; Daugherty, A.; van Bruggen, N.; Redmond, H. P.; Carano, R. A.D; Filvaroff, E. H., Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover, Proc. Natl. Acad. Sci. U.S.A., 99, 9656-9661 (2002)
[87] Taguchi, K.; Ogawa, R.; Migita, M.; Hanawa, H.; Ito, H.; Orimo, H., The role of bone marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse model, Biochem. Biophys. Res. Commun., 331, 31-36 (2005)
[88] Tolli, H.; Kujala, S.; Jamsa, T.; Jalovaara, P., Reindeer bone extract can heal the critical-size rat femur defect, Int. Orthop., 35, 615-622 (2011)
[89] Vogelin, E.; Jones, N. F.; Huang, J. I.; Brekke, J. H.; Lieberman, J. R., Healing of a critical-sized defect in the rat femur with use of a vascularized periosteal flap, a biodegradable matrix, and bone morphogenetic protein, J. Bone Joint Surg.-Am. Vol., 87A, 1323-1331 (2005)
[90] Wagegg, M.; Gaber, T.; Lohanatha, F. L.; Hahne, M.; Strehl, C.; Fangradt, M.; Tran, C. L.; Schonbeck, K.; Hoff, P.; Ode, A.; Perka, C.; Duda, G. N.; Buttgereit, F., Hypoxia promotes osteogenesis but suppresses adipogenesis of human mesenchymal stromal cells in a hypoxia-inducible factor-1 dependent manner, PLoS One, 7 (2012)
[91] Wan, C.; Gilbert, S. R.; Wang, Y.; Cao, X.; Shen, X.; Ramaswamy, G.; Jacobsen, K. A.; Alaql, Z. S.; Eberhardt, A. W.; Gerstenfeld, L. C.; Einhorn, T. A.; Deng, L.; Clemens, T. L., Activation of the hypoxia-inducible factor-1 alpha pathway accelerates bone regeneration, Proc. Natl. Acad. Sci. U.S.A., 105, 686-691 (2008)
[92] Weiner, R.; Schmitt, B. A.; Podhaisky, H., ROWMAP—a ROW-code with Krylov techniques for large stiff ODEs, Appl. Num. Math., 25, 303-319 (1997) · Zbl 0895.65035
[93] Xie, C.; Liang, B. J.; Xue, M.; Lin, A. S.P; Loiselle, A.; Schwarz, E. M.; Guldberg, R. E.; Keefe, R. J.O׳; Zhang, X. P., Rescue of impaired fracture healing in COX-2(−/−) mice via activation of prostaglandin E2 receptor subtype 4, Am. J. Pathol., 175, 772-785 (2009)
[94] Xu, Y.; Malladi, P.; Chiou, M.; Bekerman, E.; Giaccia, A. J.; Longaker, M. T., In vitro expansion of adipose-derived adult stromal cells in hypoxia enhances early chondrogenesis, Tissue Eng., 13, 2981-2993 (2007)
[95] Zelzer, E.; Glotzer, D. J.; Hartmann, C.; Thomas, D.; Fukai, N.; Soker, S.; Olsen, B. R., Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2, Mech. Devel., 106, 97-106 (2001)
[96] Zscharnack, M.; Poesel, C.; Galle, J.; Bader, A., Low oxygen expansion improves subsequent chondrogenesis of ovine bone-marrow-derived mesenchymal stem cells in collagen type I hydrogel, Cells Tissues Organs, 190, 81-93 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.