×

Hyers-Ulam stability of general Jensen-type mappings in Banach algebras. (English) Zbl 1314.39036

Let \(S\) be a connected subset of the circle \(\{v \in \mathbb{C}: |v| = 1 \}\) such that \(1 \in S \neq \{1 \}\). Suppose that \(X\) is a complex algebra, \(Y\) is a complex Banach algebra and \(\alpha, \beta \in \mathbb{R} \setminus \{0 \}\). Assume that \(f: X \to Y\) is a mapping for which there exist a constant \(L < 1\) and a function \(\varphi: X \times X \to [0, \infty)\) such that \[ \|\mu f(\alpha x + \beta y) + \mu f(\alpha x - \beta y) - 2 \alpha f(\mu x)\| \leq \varphi(x,y) \] and \[ \varphi(x,y) \leq \frac{L}{|\alpha|} \varphi(\alpha x, \alpha y) \] for all \(\mu \in S\), \(x,y \in X\).
If \( \| f(x y) - f(x) f(y) \| \leq \varphi(x, y), \;x,y \in X, \) then there exists a unique homomorphism \(h: X \to Y\) such that \[ \|f(x) - h(x) \| \leq \frac{L}{2 |\alpha|(1 - L)} \varphi(x, 0), \;x \in X. \tag{1} \]
If \(Y = X\) and \( \| f(x y) - f(x)y - xf(y) \| \leq \varphi(x, y),\, \;x, y \in X, \) then there exists a unique derivation \(h: X \to X\) fulfilling inequality (1).
Now let \([x,y] := x y - y x\) for \(x, y \in X\). If \( \| f([x,y]) - [f(x),f(y)] \| \leq \varphi(x, y),\, x, y \in X, \) then there exists a unique \(\mathbb{C}\)-linear \(h: X \to Y\) such that \(h([x, y]) = [h(x), h(y)]\) for \(x, y \in X\) (i.e., \(h\) is a Lie homomorphism) and inequality (1) is fulfilled.
If \(Y = X\) and \[ \| f([x,y]) - [f(x),y] - [x,f(y)] \| \leq \varphi(x, y),\, x, y \in X, \] then there exists a unique \(\mathbb{C}\)-linear \(h: X \to X\) such that \(h([x,y]) = [h(x),y] + [x,h(y)]\) for \(x,y \in X\) (i.e., \(h\) is a Lie derivation) and inequality (1) is fulfilled.
In the last part of the paper the authors prove the hyperstability of homomorphisms in complex Banach algebras.

MSC:

39B82 Stability, separation, extension, and related topics for functional equations
39B52 Functional equations for functions with more general domains and/or ranges
Full Text: DOI

References:

[1] Aoki T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2, 64-66 (1950) · Zbl 0040.35501 · doi:10.2969/jmsj/00210064
[2] Baker A.: Matrix Groups: An Introduction to Lie Group Theory. Springer, London (2002) · Zbl 1009.22001 · doi:10.1007/978-1-4471-0183-3
[3] Brillouët-Belluot, N., Brzdȩk, J., Ciepliński, K.: On some recent developments in Ulam’s type stability. Abstr. Appl. Anal. 2012, Article ID 716936 (2012) · Zbl 1259.39019
[4] Brzdȩk, J., Ciepliski, K.: Hyperstability and superstability. Abstract and Applied Analysis 2013 (2013), Article ID 401756 · Zbl 1293.39013
[5] Brzdȩk J., Chudziak J., Páles Zs.: A fixed point approach to stability of functional equations. Nonlinear Anal. TMA 74, 6728-6732 (2011) · Zbl 1236.39022 · doi:10.1016/j.na.2011.06.052
[6] Brzdȩk J., Fos̆ner A.: Remarks on the stability of Lie homomorphisms. J. Math. Anal. Appl. 400, 585-596 (2013) · Zbl 1280.39016 · doi:10.1016/j.jmaa.2012.11.008
[7] Bahyrycz A., Piszczek M.: Hyperstability of the Jensen functional equation. Acta Math. Hungar. 142, 353-365 (2014) · Zbl 1299.39022 · doi:10.1007/s10474-013-0347-3
[8] Brzdek J.: Hyperstability of the Cauchy equation on restricted domains. Acta Math. Hungar. 141, 58-67 (2013) · Zbl 1313.39037 · doi:10.1007/s10474-013-0302-3
[9] Cădariu, L., Găvruta, L., Găvruta P.: Fixed points and generalized Hyers-Ulam stability. Abstr. Appl. Anal. 2012, Article ID 712743 (2012) · Zbl 1252.39030
[10] Cădariu, L., Radu, V.: Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math. 4(1) (2003), Article ID 4 · Zbl 1043.39010
[11] Ciepliński K.: Applications of fixed point theorems to the Hyers-Ulam stability of functional equations—a survey. Ann. Funct. Anal. 3, 151-164 (2012) · Zbl 1252.39032 · doi:10.15352/afa/1399900032
[12] Chang I., Eshaghi Gordji M., Khodaei H., Kim H.: Nearly quartic mappings in β-homogeneous F-spaces. Results Math. 63, 529-541 (2013) · Zbl 1267.39020 · doi:10.1007/s00025-011-0215-9
[13] Diaz J.B., Margolis B.: A fixed point theorem of the alternative, for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 44, 305-309 (1968) · Zbl 0157.29904 · doi:10.1090/S0002-9904-1968-11933-0
[14] Gǎvruta P.: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184, 431-436 (1994) · Zbl 0818.46043 · doi:10.1006/jmaa.1994.1211
[15] Hyers D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222-224 (1941) · Zbl 0061.26403 · doi:10.1073/pnas.27.4.222
[16] Hyers D.H., Isac G., Rassias Th.M.: Stability of Functional Equations in Several Variables. Birkhäuser, Basel (1998) · Zbl 0907.39025 · doi:10.1007/978-1-4612-1790-9
[17] Isac G., Rassias Th.M.: On the Hyers-Ulam stability of \[{\psi}\] ψ-additive mappings. J. Approx. Theory 72, 131-137 (1993) · Zbl 0770.41018 · doi:10.1006/jath.1993.1010
[18] Jabłoński W.: Sum of graphs of continuous functions and boundedness of additive operators. J. Math. Anal. Appl. 312, 527-534 (2005) · Zbl 1076.26007 · doi:10.1016/j.jmaa.2005.03.053
[19] Jung S.: Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis. Springer, New York (2011) · Zbl 1221.39038 · doi:10.1007/978-1-4419-9637-4
[20] Lu G., Park C.: Hyers-Ulam stability of additive set-valued functional equations. Appl. Math. Lett. 24, 1312-1316 (2011) · Zbl 1220.39030 · doi:10.1016/j.aml.2011.02.024
[21] Park, C.: Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras. Fixed Point Theory Appl. 2007, Article ID 50175 (2007) · Zbl 1167.39018
[22] Park, C., Rassias, J.M.: Stability of the Jensen-type functional equation in C*-algebras: a fixed point approach. Abstr. Appl. Anal. 2009, Article ID 360432 (2009) · Zbl 1167.39020
[23] Piszczek, M.: Remark on hyperstability of the general linear equations. Aequat. Math. (2013) doi:10.1007/s00010-013-0214-x · Zbl 1304.39033
[24] Rassias Th.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297-300 (1978) · Zbl 0398.47040 · doi:10.1090/S0002-9939-1978-0507327-1
[25] Rassias, Th.M. (ed.): Functional Equations and Inequalities. Kluwer Academic, Dordrecht (2000) · Zbl 0945.00010
[26] Rassias Th.M.: On the stability of functional equations in Banach spaces. J. Math. Anal. Appl. 251, 264-284 (2000) · Zbl 0964.39026 · doi:10.1006/jmaa.2000.7046
[27] Rassias Th.M.: On the stability of functional equations and a problem of Ulam. Acta Math. Appl. 62, 23-130 (2000) · Zbl 0981.39014 · doi:10.1023/A:1006499223572
[28] Ulam S.M.: Problems in Modern Mathematics, Chapter VI, Science ed. Wiley, New York (1940)
[29] Xu T.Z., Rassias J.M., Xu W.X.: A fixed point approach to the stability of a general mixed additive-cubic functional equation in quasi fuzzy normed spaces. Int. J. Phys. Sci. 6, 313-324 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.