×

Hopf bifurcation analysis of a new commensurate fractional-order hyperchaotic system. (English) Zbl 1314.34081

Summary: In this paper, a new fractional-order hyperchaotic system based on the Lorenz system is presented. The chaotic behaviors are validated by the positive Lyapunov exponents. Furthermore, the fractional Hopf bifurcation is investigated. It is found that the system admits Hopf bifurcations with varying fractional order and parameters, respectively. Under different bifurcation parameters, some conditions ensuring the Hopf bifurcations are proposed. Numerical simulations are given to illustrate and verify the results.

MSC:

34C23 Bifurcation theory for ordinary differential equations
37G10 Bifurcations of singular points in dynamical systems
34A08 Fractional ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Full Text: DOI

References:

[1] Lorenz, E.N.: Deterministic non-periodic flows. J. Atoms. Sci. 20, 130-141 (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[2] Rössler, O.E.: Continuous chaos; four prototype equations. Ann. N. Y. Acad. Sci. 316, 376-392 (1979) · Zbl 0437.76055 · doi:10.1111/j.1749-6632.1979.tb29482.x
[3] Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465-1466 (1999) · Zbl 0962.37013 · doi:10.1142/S0218127499001024
[4] Lü, J., Chen, G.: Dynamical analysis of a new chaotic attractor. Int. J. Bifurc. Chaos 12, 1001-1015 (2002) · Zbl 1044.37021 · doi:10.1142/S0218127402004851
[5] Liu, C., Liu, T., Liu, L., Liu, K.: A new chaotic attractor. Chaos Solitons Fractals 22, 1031-1038 (2004) · Zbl 1060.37027 · doi:10.1016/j.chaos.2004.02.060
[6] Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A 71, 155-157 (1979) · Zbl 0996.37502 · doi:10.1016/0375-9601(79)90150-6
[7] Leonov, G.A., Kuznetsov, N.V.: Time-varying linearization and the Perron effects. Int. J. Bifurc. Chaos 17(4), 1079-1107 (2007) · Zbl 1142.34033 · doi:10.1142/S0218127407017732
[8] Kuznetsov, N.V., Leonov, G.A.: On stability by the first approximation for discrete systems. In: 2005 International Conference on Physics and Control, PhysCon 2005. Proceedings vol. 2005, pp. 596-599. (2005). doi:10.1109/PHYCON.2005.1514053 · Zbl 0996.37502
[9] Sun, H.H., Abdelwahab, A.A., Onaral, B.: Linear approximation of transfer function with a pole of fractional order. IEEE Trans. Autom. Control 29, 441-444 (1984) · Zbl 0532.93025 · doi:10.1109/TAC.1984.1103551
[10] Ichise, M., Nagayanagi, Y., Kojima, T.: An analog simulation of noninteger order transfer functions for analysis of electrode process. J. Electroanal. Chem. 33, 253-265 (1971) · doi:10.1016/S0022-0728(71)80115-8
[11] Kusnezov, O.: Electromagnetic Theory. Chelsea, New York (1971)
[12] Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91, 034101 (2003) · doi:10.1103/PhysRevLett.91.034101
[13] Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos in a fractional order Chua’s system. IEEE Trans. Circuits Syst. I 42, 485-490 (1995) · doi:10.1109/81.404062
[14] Mohammad, S.T., Mohammad, H.: A necessary condition for double scroll attractor existence in fractional-order systems. Phys. Lett. A 367, 102-113 (2007) · Zbl 1209.37037 · doi:10.1016/j.physleta.2007.05.081
[15] Varsha, D.G., Sachin, B.: Chaos in fractional ordered Liu system. J. Comput. Appl. Math. 59, 1117-1127 (2010) · Zbl 1189.34081 · doi:10.1016/j.camwa.2009.07.003
[16] Hassard, B., Kazarinoff, N., Wan, Y.: Theory and Application of Hopf Bifurcation. Cambridge University Press, Cambridge (1982) · Zbl 0474.34002
[17] Abdelouahab, M.S., Hamri, N.E., Wang, J.: Hopf bifurcation and chaos in fractional-order modified hybrid optical system. Nonlinear Dyn. 69, 275-284 (2011) · Zbl 1254.37034 · doi:10.1007/s11071-011-0263-4
[18] Li, X., Wu, R.C.: Dynamics of a new hyperchaotic system with only one equilibrium point. J. Math. 2013, 935384 (2013) · Zbl 1486.34085 · doi:10.1155/2013/935384
[19] Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13, 529-539 (1967)
[20] Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Proceedings of the International IMACS IEEE-SMC Multiconference on Computational Engineering in Systems Applications, vol. 2. Lille, France (1996) · Zbl 1254.37034
[21] Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 13, 3-22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[22] Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A.: On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems. Phys. Lett. A 358, 1-4 (2006) · Zbl 1142.30303 · doi:10.1016/j.physleta.2006.04.087
[23] Kuznetsov, N.V., Leonov, G.A., Vagaitsev, V.I.: Analytical-numerical method for attractor localiza- tion of generalized Chua’s system. In: IFAC Proceedings Volumes (IFAC-PapersOnline), vol. 4(1). (2010). doi:10.3182/20100826-3-TR-4016.00009 · Zbl 0962.37013
[24] Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 23(1), 1-69 (2013) · Zbl 1270.34003 · doi:10.1142/S0218127413300024
[25] Kuznetsov, N., Kuznetsov, O., Leonov, G., Vagaitsev, V.: Analytical numerical localization of hidden attractor in electrical Chua’s circuit, Lecture Notes in Electrical Engineering LNEE, vol. 174, pp. 149-158. Springer, Berlin (2013) · Zbl 1308.93107
[26] Leonov, G., Kuznetsov, N., Vagaitsev, V.: Hidden attractor in smooth Chua systems. Phys. D 241(18), 1482-1486 (2012) · Zbl 1277.34052 · doi:10.1016/j.physd.2012.05.016
[27] Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time sereis. Phys. D 16(3), 285-317 (1985) · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9
[28] Mishina, A.P., Proskuryakov, I.V.: Higher Algebra. Nauka, Moscow (1965) · Zbl 0132.25004
[29] Tavazoei, M.S., Haeri, M., Attari, M., Bolouki, S., Siami, M.: More details on analysis of fractional-order Van der Pol oscillator. J. Vib. Control 15(6), 803-819 (2009) · Zbl 1273.70037 · doi:10.1177/1077546308096101
[30] Tavazoei, M.S., Haeri, M., Attari, M.: A proof for nonexistence of periodic solutions in time invariant fractional order systems. Automatica 45(8), 1886-1890 (2009) · Zbl 1193.34006 · doi:10.1016/j.automatica.2009.04.001
[31] Tavazoei, M.S.: A note on fractional-order derivatives of periodic functions. Automatica 46, 945-948 (2010) · Zbl 1191.93062 · doi:10.1016/j.automatica.2010.02.023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.