×

Extended Harnack inequalities with exceptional sets and a boundary Harnack principle. (English) Zbl 1314.31008

Summary: Harnack’s inequality is one of the most fundamental inequalities for positive harmonic functions and has been extended to positive solutions of general elliptic equations and parabolic equations. This article gives a different generalization; namely, we generalize Harnack chains rather than equations. More precisely, we allow a small exceptional set and yet obtain a similar Harnack inequality. The size of an exceptional set is measured by capacity. The results are new even for classical harmonic functions. Our extended Harnack inequality includes information about the boundary behavior of positive harmonic functions. It yields a boundary Harnack principle for a very nasty domain whose boundary is given locally by the graph of a function with modulus of continuity worse than Hölder continuity.

MSC:

31B05 Harmonic, subharmonic, superharmonic functions in higher dimensions
31B15 Potentials and capacities, extremal length and related notions in higher dimensions
Full Text: DOI

References:

[1] H. Aikawa, Norm estimate of Green operator, perturbation of Green function and integrability of superharmonic functions, Math. Ann. 312 (1998), 289-318. · Zbl 0917.31001 · doi:10.1007/s002080050223
[2] H. Aikawa, Boundary Harnack principle and Martin boundary for a uniform domain, J. Math. Soc. Japan 53 (2001), 119-145. · Zbl 0976.31002 · doi:10.2969/jmsj/05310119
[3] H. Aikawa, Equivalence between the boundary Harnack principle and the Carleson estimate, Math. Scand. 103 (2008), 61-76. · Zbl 1163.35305
[4] H. Aikawa, Boundary Harnack principle and the quasihyperbolic boundary condition, Sobolev Spaces in Mathematics. II, Springer, New York, 2009, pp. 19-30. · Zbl 1166.31002
[5] H. Aikawa, Modulus of continuity of the Dirichlet solutions, Bull. Lond. Math. Soc. 42 (2010), 857-867. · Zbl 1203.31008 · doi:10.1112/blms/bdq040
[6] A. Ancona, Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien, Ann. Inst. Fourier (Grenoble) 28 (1978), 169-213. · Zbl 0377.31001 · doi:10.5802/aif.720
[7] D. H. Armitage and S. J. Gardiner, Classical Potential Theory, Springer-Verlag London Ltd., London, 2001. · Zbl 0972.31001 · doi:10.1007/978-1-4471-0233-5
[8] R. Bañuelos, R. F. Bass, and K. Burdzy, Hölder domains and the boundary Harnack principle, Duke Math. J. 64 (1991), 195-200. · Zbl 0755.35027 · doi:10.1215/S0012-7094-91-06408-2
[9] R. F. Bass and K. Burdzy, A boundary Harnack principle in twisted Hölder domains, Ann. of Math. (2) 134 (1991), 253-276. · Zbl 0747.31008 · doi:10.2307/2944347
[10] R. F. Bass and K. Burdzy, Lifetimes of conditioned diffusions, Probab. Theory Related Fields 91 (1992), 405-443. · Zbl 0739.60069 · doi:10.1007/BF01192065
[11] B. E. J. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), 275-288. · Zbl 0406.28009 · doi:10.1007/BF00280445
[12] B. Fuglede, Le théorème du minimax et la théorie fine du potentiel, Ann. Inst. Fourier (Grenoble) 15 (1965), 65-88. · Zbl 0128.33103 · doi:10.5802/aif.196
[13] P. Gyrya and L. Saloff-Coste, Neumann and Dirichlet heat kernels in inner uniform domains, Astérisque (2011), no. 336. · Zbl 1222.58001
[14] T. Itoh, Modulus of continuity of p-Dirichlet solutions in a metric measure space, Ann. Acad. Sci. Fenn. Math. 37 (2012), 339-355. · Zbl 1255.31008 · doi:10.5186/aasfm.2012.3741
[15] H. Shiga, Riemann mappings of invariant components of Kleinian groups, J. Lond. Math. Soc. (2) 80 (2009), 716-728. · Zbl 1184.30036 · doi:10.1112/jlms/jdp052
[16] H. Shiga, Modulus of continuity, a Hardy-Littlewood theorem and its application, Infinite Dimensional Teichmüller Spaces and Moduli Spaces, Res. Inst. Math. Sci. (RIMS), Kyoto, 2010, pp. 127-133. · Zbl 1220.30058
[17] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501
[18] J. M. G. Wu, Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains, Ann. Inst. Fourier (Grenoble) 28 (1978), 147-167. · Zbl 0368.31006 · doi:10.5802/aif.719
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.