×

Multigraded commutative algebra of graph decompositions. (English) Zbl 1314.13049

The authors analyze the toric fiber product of ideals, which is a general procedure for gluing two ideals which are homogeneous with respect to the same multigrading. The toric fiber product arises frequently in applications of combinatorial commutative algebra, particularly in algebraic statistics [A. Engström and P. Norén, Ann. Comb. 17, No. 1, 71–103 (2013; Zbl 1263.05063); B. Sturmfels and S. Sullivant, Mich. Math. J. 57, 689–709 (2008; Zbl 1180.13040); B. Sturmfels and V. Welker, J. Algebra 361, 264–286 (2012; Zbl 1316.13042)]. In algebraic statistics, an ideal \(I_G\) is often associated to a combinatorial object \(G\) such as a graph, simplicial complex, or poset. A decomposition of \(G\) into simpler objects \(G_1\) and \(G_2\) may result in a corresponding decomposition of \(I_G\) into the ideals \(I_{G_1}\) and \(I_{G_2}\). Many times \(I_G\) may be identified as the toric fiber product of \(I_{G_1}\) and \(I_{G_2}\).
The focus of this paper is twofold. First, the authors detect properties which can be lifted from two ideals to their toric fiber product. Second, the authors apply their results to a number of natural settings in algebraic statistics in which decompositions of the underlying combinatorial object leads to a toric fiber product. To give a more precise statement of the results of the paper, we describe the toric fiber product.
Let \(r,d\) be positive integers, \(\mathcal{A}=\{a^1,\dots,a^r\}\subset\mathbb{Z}^d\) a set of integral vectors, and \(s,t\in \mathbb{Z}_{\geq 0}^r\) two vectors of positive integers. Furthermore, set \[ \begin{aligned} \mathbb{K}[x]&=\mathbb{K}[x^i_j:1\leq i\leq r, 1\leq j\leq s_i], \\ \mathbb{K}[y]&=\mathbb{K}[y^i_k: 1\leq i\leq r, 1\leq k\leq t_i], \\ \mathbb{K}[z]&=\mathbb{K}[z^i_{jk}: 1\leq i\leq r,1\leq j\leq s_i, 1\leq k\leq t_i], \end{aligned} \] and define \(\phi:\mathbb{K}[z]\rightarrow \mathbb{K}[x]\otimes_\mathbb{K}\mathbb{K}[y]=\mathbb{K}[x,y]\) by \(z^i_{jk}\rightarrow x^i_jy^i_k\). Given two \(\mathbb{N}\mathcal{A}\)-graded ideals \(I\subset\mathbb{K}[x]\) and \(J\subset\mathbb{K}[y]\), the toric fiber product \(I\times_\mathcal{A}J\) of \(I\) and \(J\) is defined by \(I\times_\mathcal{A}J:=\phi^{-1}(I+J)\). The toric fiber product visibly generalizes well-known procedures in commutative algebra such as addition of monomial ideals and the Segre product.
Given the above setup, the authors address the following three problems. First, if \(\mathbb{K}[x]/I\) and \(\mathbb{K}[y]/J\) are normal, determine whether \(\mathbb{K}[z]/(I\times_\mathcal{A} J)\) is normal. Second, given primary decompositions for \(I\) and \(J\), construct the primary decomposition of \(I\times_\mathcal{A} J\). Third, given generating sets for \(I\) and \(J\), construct a generating set for \(I\times_\mathcal{A} J\).
In Section 2, particularly in Theorem 2.5, the authors prove that if \(\mathbb{K}\) is a perfect field and \(I,J\) are geometrically prime, then normality of \(\mathbb{K}[z]/(I\times_\mathcal{A} J)\) is a consequence of normality of \(\mathbb{K}[x]/I\) and \(\mathbb{K}[y]/J\). Normality is important in algebraic statistics since it implies favorable properties of sampling algorithms for contingency tables [Y. Chen et al., Ann. Stat. 34, No. 1, 523–545 (2006; Zbl 1091.62051); A. Takemura et al., “Holes in semigroups and their applications to the two-way common diagonal effect model”, in: Proceedings of the 2008 International Conference on Information Theory and Statistical Learning. Las Vegas: CSREA Press. ITSL 2008, 67–72 (2008)].
In Section 3, the authors describe a natural lifting of primary decompositions of \(I,J\) to a primary decomposition of \(I\times_\mathcal{A} J\). According to Corollary 3.3, this lifting yields an irredundant primary decomposition of \(I\times_\mathcal{A} J\) when \(\mathcal{A}\) is linearly independent, \(I,J\) decompose as an intersection of geometrically primary ideals, and the primary decompositions of \(I,J\) satisfy some mild conditions with respect to the grading by \(\mathbb{N}\mathcal{A}\).
In Section 4, building on previous work of S. Sullivant in [J. Algebra 316, No. 2, 560–577 (2007; Zbl 1129.13030)], the authors describe a way to glue together generators for \(I\times_\mathcal{A} J\) from generators of \(I\) and \(J\), provided that the given generators of \(I\) and \(J\) satisfy the so-called compatible projection property. Although this property may be difficult to detect in general, the authors show that in codimension one it follows from the simpler slow-varying condition for a Markov basis.
In Sections 5 and 6, the authors describe two applications of their methods. Section 5 is devoted to using the results of Section 4 to construct Markov bases for hierarchical models in many new cases (algebraically speaking, this is bounding the degree of generators of a binomial ideal). In particular, the authors recover the quartic generation of binary graph models associated to \(K_4\)-minor free graphs originally due to Král, Norine, and Pangrác [D. Král’ et al., J. Comb. Theory, Ser. A 117, No. 6, 759–765 (2010; Zbl 1215.05173)]. In Section 6, the authors apply the results of Section 3 to describe a recursive computation of primary decompositions of conditional independence ideals. Such primary decompositions contain a wealth of statistical information, such as connectivity of random walks using Markov subbases [T. Kahle et al., J. Commut. Algebra 6, No. 2, 173–208 (2014; Zbl 1375.13047)].

MSC:

13P25 Applications of commutative algebra (e.g., to statistics, control theory, optimization, etc.)
05E40 Combinatorial aspects of commutative algebra
13P10 Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases)

Software:

Binomials.m2; 4ti2

References:

[1] 4ti2 Team: 4ti2—A software package for algebraic, geometric and combinatorial problems on linear spaces. Available at: www.4ti2.de
[2] Aoki, S., Takemura, A.: Minimal basis for a connected Markov chain over 3×3×K contingency tables with fixed two-dimensional marginals. Aust. N. Z. J. Stat. 45(2), 229-249 (2003) · Zbl 1064.62068 · doi:10.1111/1467-842X.00278
[3] Buczyńska, W.: Phylogenetic toric varieties on graphs. J. Algebr. Comb. 35(3), 421-460 (2012) · Zbl 1376.14050 · doi:10.1007/s10801-011-0308-2
[4] Chen, Y., Dinwoodie, I.H., Sullivant, S.: Sequential importance sampling for multiway tables. Ann. Stat. 34(1), 523-545 (2006) · Zbl 1091.62051 · doi:10.1214/009053605000000822
[5] Develin, M., Sullivant, S.: Markov bases of binary graph models. Ann. Comb. 7(4), 441-466 (2003) · Zbl 1037.05045 · doi:10.1007/s00026-003-0196-9
[6] Diaconis, P., Sturmfels, B.: Algebraic algorithms for sampling from conditional distributions. Ann. Stat. 26(1), 363-397 (1998) · Zbl 0952.62088 · doi:10.1214/aos/1030563990
[7] Diestel, R.: Graph Theory, 3rd edn. Graduate Texts in Mathematics, vol. 173. Springer, Berlin (2005). 411 pp. · Zbl 1074.05001
[8] Dobra, A.: Markov bases for decomposable graphical models. Bernoulli 9(6), 1093-1108 (2003) · Zbl 1053.62072 · doi:10.3150/bj/1072215202
[9] Dobra, A., Sullivant, S.: A divide-and-conquer algorithm for generating Markov bases of multi-way tables. Comput. Stat. 19(3), 347-366 (2004) · Zbl 1063.62085
[10] Drton, M., Sturmfels, B., Sullivant, S.: Lectures on Algebraic Statistics. Oberwolfach Seminars, vol. 39. Birkhäuser Verlag, Basel (2009), viii+171 pp. · Zbl 1166.13001 · doi:10.1007/978-3-7643-8905-5
[11] Engström, A.: Cut ideals of K4-minor free graphs are generated by quadrics. Mich. Math. J. 60(3), 150-714 (2011) · Zbl 1234.14036 · doi:10.1307/mmj/1320763056
[12] Engström, A., Norén, P.: Ideals of graph homomorphisms. Ann. Comb. 17(1), 71-103 (2013) · Zbl 1263.05063 · doi:10.1007/s00026-012-0169-y
[13] Garcia, L.D., Stillman, M., Sturmfels, B.: Algebraic geometry of Bayesian networks. J. Symb. Comput. 39(3-4), 331-355 (2005) · Zbl 1126.68102 · doi:10.1016/j.jsc.2004.11.007
[14] Geiger, D., Pearl, J.: Logical and algorithmic properties of conditional independence and graphical models. Ann. Stat. 21(4), 2001-2021 (1993) · Zbl 0814.62006 · doi:10.1214/aos/1176349407
[15] Hillar, C.J., Sullivant, S.: Finite Gröbner bases in infinite dimensional polynomial rings and applications. Adv. Math. 229(1), 1-25 (2012) · Zbl 1233.13012 · doi:10.1016/j.aim.2011.08.009
[16] Hosten, S., Sullivant, S.: Gröbner bases and polyhedral geometry of reducible and cyclic models. J. Comb. Theory, Ser. A 100(2), 277-301 (2002) · Zbl 1044.62065 · doi:10.1006/jcta.2002.3301
[17] Hosten, S., Sullivant, S.: A finiteness theorem for Markov bases of hierarchical models. J. Comb. Theory, Ser. A 114(2), 311-321 (2007) · Zbl 1111.62053 · doi:10.1016/j.jcta.2006.06.001
[18] Kahle, T.: Decompositions of binomial ideals. J. Softw. Algebr. Geom. 4, 1-5 (2012) · Zbl 1311.13038
[19] Kahle, T., Rauh, J.: Markov bases database. http://markov-bases.de/
[20] Kahle, T., Rauh, J., Sullivant, S.: Positive margins and primary decomposition. J. Commut. Algebra, in press. arXiv:1201.2591 · Zbl 1375.13047
[21] Král, D., Norine, S.: Pangrác, O.: Markov bases of binary graph models of K4-minor free graphs. J. Comb. Theory, Ser. A 117(6), 759-765 (2010) · Zbl 1215.05173 · doi:10.1016/j.jcta.2009.07.007
[22] Lauritzen, S.L.: Graphical Models. Oxford Statistical Science Series, vol. 17. The Clarendon Press, New York (1996), x+298 pp. · Zbl 0907.62001
[23] Manon, C.A.: The algebra of conformal blocks (2009). arXiv:0910.0577 · Zbl 1327.14055
[24] Michałek, M.: Geometry of phylogenetic group-based models. J. Algebra 339, 339-356 (2011) · Zbl 1251.14040 · doi:10.1016/j.jalgebra.2011.05.016
[25] Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory, 3rd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete (2), vol. 34. Springer, Berlin (1994), xiv+292 pp. · Zbl 0797.14004 · doi:10.1007/978-3-642-57916-5
[26] Norén, P.: The three-state toric homogeneous Markov chain model has Markov degree two (2012). arXiv:1207.0077 · Zbl 1315.13045
[27] Ohsugi, H.: Normality of cut polytopes of graphs in a minor closed property. Discrete Math. 310(6-7), 1160-1166 (2010) · Zbl 1230.05241 · doi:10.1016/j.disc.2009.11.012
[28] Petrović, S., Stokes, E.: Betti numbers of Stanley-Reisner rings determine hierarchical Markov degrees. J. Algebr. Comb. to appear. arXiv:0910.1610 · Zbl 1272.13019
[29] Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Comb. Theory, Ser. B 92(2), 325-357 (2004) · Zbl 1061.05088 · doi:10.1016/j.jctb.2004.08.001
[30] Simis, A., Ulrich, B.: On the ideal of an embedded join. J. Algebra 226(1), 1-14 (2000) · Zbl 1034.14026 · doi:10.1006/jabr.1999.8091
[31] Sturmfels, B., Sullivant, S.: Toric geometry of cuts and splits. Mich. Math. J. 57, 689-709 (2008) · Zbl 1180.13040 · doi:10.1307/mmj/1220879432
[32] Sturmfels, B., Welker, V.: Commutative algebra of statistical ranking. J. Algebra 361, 264-286 (2012) · Zbl 1316.13042 · doi:10.1016/j.jalgebra.2012.03.028
[33] Sullivant, S.: Normal binary graph models. Ann. Inst. Stat. Math. 64(4), 717-726 (2010) · Zbl 1440.62396 · doi:10.1007/s10463-010-0296-3
[34] Sullivant, S.: Toric fiber products. J. Algebra 316(2), 560-577 (2007) · Zbl 1129.13030 · doi:10.1016/j.jalgebra.2006.10.004
[35] Swanson, I., Huneke, C.: Integral Closure of Ideals, Rings, and Modules. LMS Lecture Note Series. Cambridge University Press, Cambridge (2006) · Zbl 1117.13001
[36] Takemura, A.; Thomas, P.; Yoshida, R., Holes in semigroups and their applications to the two-way common diagonal effect model, 67-72 (2008), Las Vegas
[37] Takken, A.: Monte Carlo goodness-of-fit tests for discrete data. Ph.D. dissertation, Dept. Statistics, Stanford Univ. (2000)
[38] Tousi, M., Yassemi, S.: Tensor products of some special rings. J. Algebra 268(2), 672-676 (2003) · Zbl 1087.13506 · doi:10.1016/S0021-8693(03)00105-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.