×

Modeling and investigation of thermomechanical behavior of thermosensitive solids with allowance for the thermal radiation effect. (Ukrainian, English) Zbl 1313.74057

Mat. Metody Fiz.-Mekh. Polya 56, No. 2, 212-224 (2013); translation in J. Math. Sci., New York 203, No. 2, 265-278 (2014).
The authors present a review of investigations in the field of radiation thermomechanics of solids of different transparency to thermal radiation. A model problem for an irradiated heat-sensitive layer is used to study the effect of the temperature sensitivity of thermal, mechanical and radiative characteristics on the stresses in semitransparent and nontransparent solids. For the investigation, a method for solving nonlinear problems on heat transfer and thermoelasticity based on the finite element method is applied.

MSC:

74F05 Thermal effects in solid mechanics
74A15 Thermodynamics in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI

References:

[1] A. G. Blokh, Yu. A. Zhuravlev, and L. N. Ryzhkov, Radiation Heat Transfer: A Handbook [in Russian], Énergoatomizdat, Moscow (1991).
[2] A. R. Gachkevich, Thermoelasticity of Electroconducting Bodies Subjected to the Action of Electromagnetic Radiation of the Infrared Frequency Range [in Russian], Preprint No. 10-93, Podstrigach Institute for Applied Problems of Mechanics and Mathematics, Lviv (1993). · Zbl 0979.74515
[3] Gachkevich, AR; Boichuk, VY, Thermomechanical behavior of nonmetallic electrical conductors during high-temperature treatment, J. Math. Sci., 86, 2585-2589, (1997) · doi:10.1007/BF02356101
[4] Gachkevich, AR; Boichuk, VY, Thermal stress of a long cylinder heated by thermal radiation, Int. Appl. Mech., 23, 328-332, (1987)
[5] A. R. Gachkevich, B. S. Malkiel’, Yu. R. Sosnovyi, and R. F. Terletskii, “Mathematical modeling and the study of the heat exchange process in color kinescopes,” in: Mathematical Methods and Physicomechanical Fields [in Russian], Issue 30 (1989), pp. 57-63; {\bfEnglish translation}: J. Sov. Math., 63, No. 3, 358-363 (1993).
[6] Hachkevych, AR; Terletskii, RF; Brukhal’, MB, Some problems of mathematical modeling in thermomechanics of bodies of various transparencies subjected to thermal irradiation, J. Math. Sci., 165, 403-425, (2010) · doi:10.1007/s10958-010-9808-1
[7] Hachkevych, OR; Terlets’kyi, RF; Kurnyts’kyi, TL; Burak, YI (ed.); Kushnir, RM (ed.), Mechanothermodiffusion in partially transparent bodies, No. 2, (2007), Lviv
[8] Hachkevych, OR; Terlets’kyi, RF; Sosnovyi, YR; Brukhal’, MB, Mechanical behavior of cooled bodies with regard for the emission of heat energy, Mater. Sci., 46, 47-55, (2010) · doi:10.1007/s11003-010-9262-8
[9] B. A. Grigor’ev, Pulse Heating by Radiation [in Russian], Vol. 2, Nauka, Moscow (1974).
[10] O. B. Humenchuk, Thermal stress State of Partially Transparent Bodies with Cavities under Thermal Radiation [in Ukrainian], Candidate-Degree Thesis (Phys., Math.), Lviv (2008).
[11] Y. Jaluria, Natural Convection: Heat and Mass Transfer, Pergamon, New York (1980).
[12] R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, McGraw-Hill, New York (1972).
[13] A. E. Sheindlin (editor), Radiation Properties of Solid Materials: Handbook [in Russian], Énergiya, Moscow (1974).
[14] A. D. Kovalenko, Foundations of Thermoelasticity [in Russian], Naukova Dumka, Kiev (1970).
[15] F. Kreit and W. Z. Black, Basic Heat Transfer, Harper and Row, New York (1980).
[16] L. N. Lavrikov and Yu. F. Yurchenko, Thermal Properties of Metals and Alloys [in Russian], Naukova Dumka, Kiev (1985).
[17] A. V. Lykov, Theory of Heat Conduction [in Russian], Vysshaya Shkola, Moscow (1967).
[18] S. B. Maslenkov and E. A. Maslenkova, Steels and Alloys for High Temperatures: Handbook [in Russian], Part 1, Metallurgiya, Moscow (1991).
[19] V. A. Petrov and N. V. Marchenko, Energy Transfer in Partially Transparent Solid Materials [in Russian], Nauka, Moscow (1985).
[20] Popovych, VS; Vovk, OM, A procedure for the solution of the problem of conductive-radiation heat transfer between a cylindrical and an \(N\)-angular prismatic shells, Mat. Metody Fiz.-Mekh. Polya, 47, 158-168, (2004) · Zbl 1122.74448
[21] Yu. S. Postol’nyk and A. P. Ohurtsov, Nonlinear Applied Thermomechanics [in Ukrainian], NMTs VO MONU, Kyiv (2000).
[22] N. A. Rubtsov, Radiation Heat Transfer in Continua [in Russian], Nauka, Novosibirsk (1984). · Zbl 0578.73005
[23] N. A. Rubtsov, A. M. Timofeev, and N. A. Savvinova, Combined Heat Transfer in Semitransparent Media [in Russian], Izd. SO RAN, Novosibirsk (2003).
[24] R. F. Terletskii, Thermal stress State of Low-Electroconducting Bodies under the Action of Electromagnetic Radiation [in Russian], Candidate-Degree Thesis (Phys., Math., 01.02.04), Lviv (1988).
[25] R. F. Terletskii, O. P. Turii, and M. B. Brukhal’, “Problems of thermomechanics for irradiated bodies,” in: Theoretical and Applied Mechanics [in Russian], Issue 4(50) (2012), pp. 30-37. · Zbl 1274.74100
[26] Terlets’kyi, RF; Turii, OP, Thermomechanical behavior of a plate composed of layers with different transparencies under the action of thermal radiation, Mater. Sci., 43, 769-779, (2007) · doi:10.1007/s11003-008-9021-2
[27] O. P. Turii, Thermal stress State of Layered Plates under Thermal Radiation [in Ukrainian], Candidate-Degree Thesis (Phys., Math.), Lviv (2010).
[28] C. A. Wert and R. M. Thomson, Physics of Solids, McGraw-Hill, New York (1964).
[29] W. Espe, Technology of Electric Vacuum Devices [Russian translation], Vol. 2, Énergiya, Moscow (1968).
[30] Anderson, EE; Viskanta, R, Effective thermal conductivity for heat transfer through semitransparent solids, J. Am. Ceram. Soc., 56, 541-546, (1973) · doi:10.1111/j.1151-2916.1973.tb12407.x
[31] Asllanaj, F; Jeandel, G; Roche, JR, Numerical solution of radiation transfer equation coupled with nonlinear heat conduction equation, Int. J. Numer. Method Heat Fluid Flow, 11, 449-472, (2001) · Zbl 0997.80015 · doi:10.1108/EUM0000000005528
[32] Burka, AL; Likhanskii, PM, Transient radiation-conductive heating of plexiglas, J. Appl. Mech. Tech. Phys., 42, 469-474, (2001) · Zbl 0980.80005 · doi:10.1023/A:1019250805339
[33] Chang Yan-Po and R. S. Smith (Jr.), “Steady and transient heat transfer by radiation and conduction in a medium bounded by two coaxial cylindrical surfaces,” Int. J. Heat Mass Transfer, 13, No. 1, 69-80 (1970).
[34] Chu, H-S; Weng, L-C, Transient combined conduction and radiation in anisotropically scattering spherical media, J. Thermophys. Heat Transfer, 6, 553-556, (1992) · doi:10.2514/3.399
[35] Coquard, R; Rochais, D; Baillis, D, Experimental investigations of the coupled conductive and radiation heat transfer in metallic/ceramic foams, Int. J. Heat Mass Transfer, 52, 4907-4918, (2009) · Zbl 1176.80010 · doi:10.1016/j.ijheatmasstransfer.2009.05.015
[36] Tai-His, F; Fedorov, AG, Radiation transfer in a semitransparent hemispherical shell, J. Quant. Spectroscopy RA, 73, 285-296, (2002) · doi:10.1016/S0022-4073(01)00228-X
[37] Fernandes, R; Francis, J, Combined conductive and radiation heat transfer in an absorbing, emitting, and scattering cylindrical medium, Trans. ASME, J. Heat Transfer, 104, 594-601, (1982) · doi:10.1115/1.3245173
[38] Lee, KH; Viskanta, R, Two-dimensional combined conduction and radiation heat transfer: comparison of the discrete ordinates method and the diffusion approximation methods, Numer. Heat Transfer, Part A, 39, 205-225, (2001) · doi:10.1115/1.1338133
[39] Lazard, M; André, S; Maillet, D, Diffusivity measurement of semi-transparent media: model of the coupled transient heat transfer and experiments on Glass, silica Glass and zinc selenide, Int. J. Heat Mass Transfer, 47, 477-487, (2004) · doi:10.1016/j.ijheatmasstransfer.2003.07.003
[40] Linden, BJ; Mattheij, RMM, A new method for solving radiation heat problems in Glass, Int. J. Forming Processes, 2, 41-61, (1999)
[41] M. F. Modest, Radiation Heat Transfer, Academic, New York (2003).
[42] Muresan, C; Vaillon, R; Menezo, C; Morlot, R, Discrete ordinates solution of coupled conductive radiation heat transfer in a two-layer slab with fresnel interfaces subject to diffuse and obliquely collimated irradiation, J. Quant. Spectroscopy, RA, 84, 551-562, (2004) · doi:10.1016/S0022-4073(03)00271-1
[43] Ping, TH; Lallemand, M, Transient radiation-conductive heat transfer in flat glasses submitted to temperature, flux and mixed boundary conditions, Int. J. Heat Mass Transfer, 32, 795-810, (1989) · doi:10.1016/0017-9310(89)90229-9
[44] Schwander, D; Flamant, G; Olalde, G, Effects of boundary properties on transient temperature distributions in condensed semitransparent media, Int. J. Heat Mass Transfer, 33, 1685-1695, (1990) · doi:10.1016/0017-9310(90)90024-O
[45] Sharbati, E; Safavisohi, B; Aghanajafi, C, Transient heat transfer analysis of a layer by considering the effect of radiation, J. Fusion Energy, 23, 207-215, (2004) · doi:10.1007/s10894-005-5600-5
[46] Siedow, N; Grosan, T; Lochegnies, D; Romero, E, Application of a new method for radiation heat transfer to flat Glass tempering, J. Am. Ceram. Soc., 88, 2181-2187, (2005) · doi:10.1111/j.1551-2916.2005.00402.x
[47] Siegel, R, Transient effects of radiation transfer in semitransparent materials, Int. J. Eng. Sci., 36, 1701-1739, (1998) · doi:10.1016/S0020-7225(98)00054-8
[48] Siegel, R, Transient heat transfer in a semitransparent radiating layer with boundary convection and surface reflections, Int. J. Heat Mass Transfer, 39, 69-79, (1996) · doi:10.1016/S0017-9310(96)85007-1
[49] Siegel, R, Two-flux method for transient radiation transfer in a semitransparent layer, Int. J. Heat Mass Transfer, 39, 1111-1115, (1996) · Zbl 0979.74515 · doi:10.1016/0017-9310(95)00178-6
[50] Su, M-H; Sutton, WH, Transient conductive and radiation heat transfer in a silica window, J. Thermophys. Heat Transfer, 9, 370-373, (1995) · doi:10.2514/3.672
[51] Sutton, WH, A short time solution for coupled conduction and radiation in a participating slab geometry, Trans. ASME, J. Heat Transfer, 108, 465-466, (1986) · doi:10.1115/1.3246949
[52] Thömmes, G, A linear iterative scheme for the fast solution of the radiation heat transfer equations for Glass, J. Comput. Phys., 193, 544-562, (2004) · Zbl 1109.80307 · doi:10.1016/j.jcp.2003.08.024
[53] Tsai, C-F; Nixon, G, Transient temperature distribution of a multilayer composite wall with effects of internal thermal radiation and conduction, Numer. Heat Transfer, 10, 95-101, (1986) · Zbl 0616.73112 · doi:10.1080/10407788608913510
[54] Tsai, JR; Özişik, MN, Transient, combined conduction and radiation in an absorbing, emitting, and isotropically scattering solid sphere, J. Quant. Spectroscopy, RA, 38, 243-251, (1987) · doi:10.1016/0022-4073(87)90066-5
[55] Wang, P-Y; Cheng, H-E; Tan, H-P, Transient thermal analysis of semitransparent composite layer with an opaque boundary, Int. J. Heat Mass Transfer, 45, 425-440, (2002) · Zbl 1002.80503 · doi:10.1016/S0017-9310(01)00143-0
[56] Weston, KC; Hauth, JL, Unsteady, combined radiation and conduction in an absorbing, scattering, and emitting medium, Trans. ASME, J. Heat Transfer, 95, 357-364, (1973) · doi:10.1115/1.3450064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.