×

Riccati-based boundary feedback stabilization of incompressible Navier-Stokes flows. (English) Zbl 1312.93083

Summary: In this article, a boundary feedback stabilization approach for incompressible Navier-Stokes flows is studied. One of the main difficulties encountered is the fact that after space discretization by a mixed finite element method (because of the solenoidal condition) one ends up with a differential algebraic system of index 2. The remedy here is to use a discrete realization of the Leray projection used by J.-P. Raymond [”Feedback boundary stabilization of the two-dimensional Navier-Stokes equations”, SIAM J. Control Optim. 45, No. 3, 790-828 (2006; Zbl 1121.93064)] to analyze and stabilize the continuous problem. Using the discrete projection, a Linear Quadratic Regulator (LQR) approach can be applied to stabilize the (discrete) linearized flow field with respect to small perturbations from a stationary trajectory. We provide a novel argument that the discrete Leray projector is nothing else but the numerical projection method proposed by Heinkenschloss and colleagues in M. Heinkenschloss, D. C. Sorensen, and K. Sun [”Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations”, SIAM J. Sci. Comput. 30, No. 2, 1038-1063 (2008; Zbl 1216.76015)].. The nested iteration resulting from applying this approach within the Newton-ADI method to solve the LQR algebraic Riccati equation is the key to compute a feedback matrix that in turn can be applied within a closed-loop simulation. Numerical examples for various parameters influencing the different levels of the nested iteration are given. Finally, the stabilizing property of the computed feedback matrix is demonstrated using the von Kármán vortex street within a finite element based flow solver.

MSC:

93D15 Stabilization of systems by feedback
49M15 Newton-type methods
76D55 Flow control and optimization for incompressible viscous fluids

References:

[1] L. Amodei and J. M. Buchot, {\it A stabilization algorithm of the Navier-Stokes equations based on algebraic Bernoulli equation}, Numer. Linear Algebra Appl., 19 (2012), pp. 700-727. · Zbl 1274.76186
[2] W. F. Arnold and A. J. Laub, {\it Generalized eigenproblem algorithms and software for algebraic Riccati equations}, Proc. IEEE, 72 (1984), pp. 1746-1754.
[3] H. T. Banks and K. Ito, {\it A numerical algorithm for optimal feedback gains in high dimensional linear quadratic regulator problems}, SIAM J. Control Optim., 29 (1991), pp. 499-515. · Zbl 0736.65043
[4] H. T. Banks and K. Kunisch, {\it The linear regulator problem for parabolic systems}, SIAM J. Control Optim., 22 (1984), pp. 684-698. · Zbl 0548.49017
[5] E. Bänsch, {\it Local mesh refinement in \(2\) and \(3\) dimensions}, IMPACT Comput. Sci. Eng., 3 (1991), pp. 181-191. · Zbl 0744.65074
[6] E. Bänsch, {\it Simulation of instationary, incompressible flows}, Acta Math. Univ. Comenian., 67 (1998), pp. 101-114. · Zbl 0929.35105
[7] E. Bänsch and P. Benner, {\it Stabilization of incompressible flow problems by Riccati-based feedback}, in Constrained Optimization and Optimal Control for Partial Differential Equations, G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, and S. Ulbrich, eds., Internat. Ser. Numer. Math. 160, Birkhäuser, Basel, 2012, pp. 5-20. · Zbl 1356.93077
[8] E. Bänsch, P. Benner, J. Saak, and H. K. Weichelt, {\it Optimal control-based feedback stabilization of multi-field flow problems}, in Trends in PDE Constrained Optimization, G. Leugering, P. Benner, S. Engell, A. Griewank, H. Harbrecht, M. Hinze, R. Rannacher, and S. Ulbrich, eds., Internat. Ser. Numer. Math. 165, Birkhäuser, Basel, 2014, pp. 173-188. · Zbl 1327.49061
[9] S. Barrachina, P. Benner, and E. S. Quintana-Ortí, {\it Efficient algorithms for generalized algebraic Bernoulli equations based on the matrix sign function}, Numer. Algorithms, 46 (2007), pp. 351-368. · Zbl 1132.65033
[10] P. Benner, {\it Solving large-scale control problems}, IEEE Control Syst. Mag., 14 (2004), pp. 44-59.
[11] P. Benner, P. Kürschner, and J. Saak, {\it Efficient handling of complex shift parameters in the low-rank Cholesky factor ADI method}, Numer. Algorithms, 62 (2013), pp. 225-251. · Zbl 1267.65047
[12] P. Benner, P. Kürschner, and J. Saak, {\it An improved numerical method for balanced truncation for symmetric second order systems}, Math. Comput. Model. Dyn. Syst., 19 (2013), pp. 593-615. · Zbl 1305.93043
[13] P. Benner, J.-R. Li, and T. Penzl, {\it Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic control problems}, Numer. Linear Algebra Appl., 15 (2008), pp. 755-777. · Zbl 1212.65245
[14] P. Benner and J. Saak, {\it A Galerkin-Newton-ADI Method for Solving Large-Scale Algebraic Riccati Equations}, Preprint SPP1253-090, DFG-SPP1253, 2010; available online from http://www.am.uni-erlangen.de/home/spp1253/wiki/images/2/28/Preprint-SPP1253-090.pdf.
[15] P. Benner, J. Saak, M. Stoll, and H. K. Weichelt, {\it Efficient solution of large-scale saddle point systems arising in Riccati-based boundary feedback stabilization of incompressible Stokes flow}, SIAM J. Sci. Comput., 35 (2013), pp. S150-S170. · Zbl 1290.76059
[16] P. Benner, J. Saak, M. Stoll, and H. K. Weichelt, {\it Efficient solvers for large-scale saddle point systems arising in feedback stabilization of multi-field flow problems}, in System Modeling and Optimization, C. Pötzsche, C. Heuberger, B. Kaltenbacher, and F. Rendl, eds., IFIP Adv. Inf. Commun. Technol. 443, Springer, New York, 2014, pp. 11-20. · Zbl 1329.76105
[17] A. Bensoussan, G. Da Prato, M. C. Delfour, and S. K. Mitter, {\it Representation and Control of Infinite Dimensional Systems, Vol. {\it I}}, Systems Control Found. Appl., Birknäuser, Boston, 1992. · Zbl 0781.93002
[18] R. F. Boisvert, R. Pozo, and K. A. Remington, {\it The Matrix Market Exchange Formats: Initial Design}, NIST Interim Report 5935, National Institutes of Standards and Technology, 1996.
[19] M. O. Bristeau, R. Glowinski, and J. Périaux, {\it Numerical methods for the Navier-Stokes equations. Applications to the simulation of compressible and incompressible viscous flows}, in Finite Elements in Physics (Lausanne, 1986), North-Holland, Amsterdam, 1987, pp. 73-187.
[20] J. A. Burns, E. W. Sachs, and L. Zietsman, {\it Mesh independence of Kleinman-Newton iterations for Riccati equations in Hilbert space}, SIAM J. Control Optim., 47 (2008), pp. 2663-2692. · Zbl 1171.49024
[21] K. A. Cliffe, T. J. Garratt, and A. Spence, {\it Eigenvalues of block matrices arising from problems in fluid mechanics}, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 1310-1318. · Zbl 0807.65030
[22] E. Deriaz and V. Perrier, {\it Orthogonal Helmholtz decomposition in arbitrary dimension using divergence-free and curl-free wavelets}, Appl. Comput. Harmon. Anal., 26 (2009), pp. 249-269. · Zbl 1170.35008
[23] H. C. Elman, D. J. Silvester, and A. J. Wathen, {\it Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics}, Oxford University Press, Oxford, UK, 2005. · Zbl 1083.76001
[24] F. Feitzinger, T. Hylla, and E. W. Sachs, {\it Inexact Kleinman-Newton method for Riccati equations}, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 272-288. · Zbl 1191.49033
[25] V. Girault and P. A. Raviart, {\it Finite Element Methods for Navier-Stokes Equations}, Springer-Verlag, Berlin, 1986. · Zbl 0585.65077
[26] G. H. Golub and C. F. van Loan, {\it Matrix Computations}, 3rd ed., Johns Hopkins University Press, Baltimore, 1996. · Zbl 0865.65009
[27] S. Gugercin, T. Stykel, and S. Wyatt, {\it Model reduction of descriptor systems by interpolatory projection methods}, SIAM J. Sci. Comput., 35 (2013), pp. B1010-B1033. · Zbl 1290.41001
[28] S. Hein, {\it MPC-LQG-Based Optimal Control of Parabolic PDEs}, Dissertation, TU Chemnitz, 2009; available from http://archiv.tu-chemnitz.de/pub/2010/0013.
[29] M. Heinkenschloss, D. C. Sorensen, and K. Sun, {\it Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations}, SIAM J. Sci. Comput., 30 (2008), pp. 1038-1063. · Zbl 1216.76015
[30] J. G. Heywood, R. Rannacher, and S. Turek, {\it Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations}, Internat. J. Numer. Methods Fluids, 22 (1996), pp. 325-352. · Zbl 0863.76016
[31] M. Hinze and K. Kunisch, {\it Second order methods for boundary control of the instationary Navier-Stokes system}, Z. Angew. Math. Mech., 84 (2004), pp. 171-187. · Zbl 1042.35047
[32] P. Hood and C. Taylor, {\it Navier-Stokes equations using mixed interpolation}, in Finite Element Methods in Flow Problems, J. T. Oden, R. H. Gallagher, C. Taylor, and O. C. Zienkiewicz, eds., University of Alabama in Huntsville Press, 1974, pp. 121-132.
[33] D. L. Kleinman, {\it On an iterative technique for Riccati equation computations}, IEEE Trans. Automat. Control, 13 (1968), pp. 114-115.
[34] P. Lancaster and L. Rodman, {\it The Algebraic Riccati Equation}, Oxford University Press, Oxford, UK, 1995. · Zbl 0836.15005
[35] I. Lasiecka and R. Triggiani, {\it Control Theory for Partial Differential Equations: Continuous and Approximation Theories {\it I}. Abstract Parabolic Systems}, Cambridge University Press, Cambridge, UK, 2000. · Zbl 0942.93001
[36] J.-R. Li and J. White, {\it Low rank solution of Lyapunov equations}, SIAM J. Matrix Anal. Appl., 24 (2002), pp. 260-280. · Zbl 1016.65024
[37] A. Locatelli, {\it Optimal Control: An Introduction}, Birkhäuser, Basel, 2001. · Zbl 1096.49500
[38] T. Penzl, {\it Lyapack Users Guide}, Preprint SFB393/00-33, TU Chemnitz, Germany, 2000; available from http://www.tu-chemnitz.de/sfb393/sfb00pr.html.
[39] J.-P. Raymond, {\it Local boundary feedback stabilization of the Navier-Stokes equations}, in Proceedings of Control Systems: Theory, Numerics and Applications, Rome, 2005; available from http://pos.sissa.it.
[40] J.-P. Raymond, {\it Feedback boundary stabilization of the two-dimensional Navier-Stokes equations}, SIAM J. Control Optim., 45 (2006), pp. 790-828. · Zbl 1121.93064
[41] J.-P. Raymond, {\it Feedback boundary stabilization of the three-dimensional incombressible Navier-Stokes equations}, J. Math. Pures Appl. (9), 87 (2007), pp. 627-669. · Zbl 1114.93040
[42] J.-P. Raymond, {\it Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions}, Ann. Inst. H. Poincaré Anal. Non Linéare, 24 (2007), pp. 921-951. · Zbl 1136.35070
[43] J. Saak, {\it Efficient Numerical Solution of Large Scale Algebraic Matrix Equations in PDE Control and Model Order Reduction}, Dissertation, TU Chemnitz, 2009; available from http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200901642.
[44] M. Schäfer and S. Turek, {\it Benchmark Computations of Laminar Flow Around a Cylinder}, Preprint 96-03, Universität Heidelberg, 1996. · Zbl 0874.76070
[45] W. E. Schiesser, {\it Numerical Methods of Lines}, Academic Press, New York, 1991. · Zbl 0763.65076
[46] E. L. Wachspress, {\it The ADI Model Problem}, Springer, New York, 2013. · Zbl 1277.65022
[47] H. K. Weichelt, {\it Riccati-Based Feedback Stabilized Navier-Stokes Flow}, https://zenodo.org/record/7110#.VLzNwV3KzEU (2013).
[48] J. Weickert, {\it Navier-Stokes Equations as a Differential-Algebraic System}, Preprint SFB393/ 96-08, Department of Mathematics, Chemnitz University of Technology, 1996.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.