×

The impact of self-protective measures in the optimal interventions for controlling infectious diseases of human population. (English) Zbl 1312.92038

The authors deal with a mathematical model for infectious disease epidemics with behaviour change and treatment. According to the stability analysis of the system, they point out that behaviour modification by the population has a significant impact on the dynamics of the disease. In addition, an optimal control theory is applied to propose the best possible combination of efforts in controlling the disease.

MSC:

92D30 Epidemiology
34C60 Qualitative investigation and simulation of ordinary differential equation models
92C60 Medical epidemiology
49J15 Existence theories for optimal control problems involving ordinary differential equations
49K15 Optimality conditions for problems involving ordinary differential equations
Full Text: DOI

References:

[1] Ahituv A, Hotz VJ, Philipson T (1996) The responsiveness of the demand for conditions to the local prevalence of AIDS. J Hum Resour 31:869-897 · doi:10.2307/146150
[2] Behncke H (2000) Optimal control of deterministic epidemics. Optim Control Appl Methods 21:269-285 · Zbl 1069.92518 · doi:10.1002/oca.678
[3] Bertrand JE (2004) Diffusion of innovations and HIV / AIDS. J Health Commun 9:113-121 · doi:10.1080/10810730490271575
[4] Brauer F, van den Driessche P, Wu J (eds) Mathematical epidemiology. Springer, Berlin (2008) · Zbl 1159.92034
[5] Campbell GL, Hughes JM (1995) Plague in India: a new warning from an old nemesis. Ann Intern Med 122:151-153 · doi:10.7326/0003-4819-122-2-199501150-00014
[6] Castillo-Chavez C, Song B (2004) Dynamical models of tuberculosis and their applications. Math Biosci Eng 1:361-404 · Zbl 1060.92041 · doi:10.3934/mbe.2004.1.361
[7] Chen FH (2004) Rational behavioural response and the transmission of STDs. Theor Popul Biol 66:307-316 · Zbl 1073.92042 · doi:10.1016/j.tpb.2004.07.004
[8] Chen FH (2006) On the transmission of HIV with self-protective behaviour and preferred mixing. Math Biosci 199:141-159 · Zbl 1086.92046 · doi:10.1016/j.mbs.2005.12.004
[9] Chen FH (2009) Modelling the effect of information quality on risk behaviour change and the transmission of infectious diseases. Math Biosci 217:125-133 · Zbl 1157.92026 · doi:10.1016/j.mbs.2008.11.005
[10] Coddington EA, Levinson N (1972) Theory of ordinary differential equations, TMH edition. McGraw-Hill, NY
[11] Donnell D, Baeten JM, Kiarie J, Thomas KK, Stevens W, Cohen CR, Mclntyre J, Lingappa JR, Celum C (2010) Heterosexual HIV-1 transmission after initiation of antiretroviral therapy: a prospective cohort analysis. Lancet 375:2092-2098 · doi:10.1016/S0140-6736(10)60705-2
[12] Fenichel EP, Castillo-Chavez C, Ceddia MG, Chowell G, Gonzalez Parra PA, Hickling J, Holloway G, Horan R, Morin B, Perrings C, Springborn M, Velazquez L, Villalobos C (2011) Adaptive human behavior in epidemiological models. PNAS 108(15):6306-6311 · doi:10.1073/pnas.1011250108
[13] Ferguson N (2007) Capturing human behaviour. Nature 446:733-733. doi:10.1038/446733a · Zbl 1148.74316 · doi:10.1038/446733a
[14] Fister KR, Lenhart S, McNally JS (1998) Optimizing chemotherapy in an HIV model. Electron J Differ Equ 32:1-12 · Zbl 1068.92503
[15] Funk S, Gilad E, Watkinsen C, Jansen VAA (2009) The spread of awareness and its impact on epidemic outbreaks. Proc Natl Acad Sci USA 106:6872-6877 · Zbl 1203.91242 · doi:10.1073/pnas.0810762106
[16] Funk S, Salathé M, Jansen VAA (2010) Modelling the influence of human behaviour on the spread of infectious diseases: a review. J R Soc. doi:10.1098/rsf.2010.0142
[17] Gaff H, Schaefer E (2009) Optimal control applied to vaccination and treatment strategies for various epidemiological models. Math Biosci Eng 6:469-492 · Zbl 1169.49018 · doi:10.3934/mbe.2009.6.469
[18] Granich RM, Gilks CF, Dye C, De Cock KM (2009) Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model. Lancet 375:48-57 · doi:10.1016/S0140-6736(08)61697-9
[19] Green LW, McAlister AL (1984) Macro-intervention to support health behaviour: some theoretical perspectives and practical reflections. Health Educ Q 11:322-339
[20] Green LW, Ottoson JM, García C, Hiatt RA (2009) Diffusion theory and knowledge dissemination, utilization, and integration in public health. Annu Rev Pub Health 30:151-174 · doi:10.1146/annurev.publhealth.031308.100049
[21] Hackbush WK (1978) A numerical method for solving parabolic equations with opposite orientations. Computing 20:229-240 · Zbl 0391.65044 · doi:10.1007/BF02251947
[22] Hartl RF, Sethi SP, Vickson RG (1995) A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev 37:181-218 · Zbl 0832.49013 · doi:10.1137/1037043
[23] Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42:599-653 · Zbl 0993.92033 · doi:10.1137/S0036144500371907
[24] Joshi H, Lenhart S, Albright K, Gibson K (2008) Modelling the effect of information campaigns on the HIV epidemic in Uganda. Math Biosci Eng 5(4):757-770 · Zbl 1154.92037 · doi:10.3934/mbe.2008.5.757
[25] Kassa SM, Ouhinou A (2011) Epidemiological models with prevalence dependent endogenous self-protection measure. Math Biosci 229(1):41-49 · Zbl 1208.92068 · doi:10.1016/j.mbs.2010.10.007
[26] Lau JT, Yang X, Pang E, Tsui HY, Wong E, Wing YK (2005) SARS-related perceptions in Hong Kong. Emerg Infect Dis 11:417-424 · doi:10.3201/eid1107.041045
[27] Lukes DL (1982) Differential equations: classical to control. Academic press, Edinburgh · Zbl 0509.34003
[28] Oldenburg B, Glanz K (2008) Diffusion of Innovasions. In: Glanz K, Rimer BK, Viswanath K (eds) Health behaviour and health education, 4th edn. Wiley, London · Zbl 1015.92036
[29] Philipson T (1996) Private vaccination and public health: an emperical examination for US measles. J Hum Resour 31:611-630 · doi:10.2307/146268
[30] Pontryagin LS, Boltyanskii VT, Gamkrelidze RV, Mishchenko EF (1962) The mathematical theory of optimal processes. Wiley, London · Zbl 0102.32001
[31] Rogers EM (1983) Diffusion of innovations, 3rd edn. The Free press, New York
[32] Turner CF, Miller HG, Moses LE (eds) (1989) AIDS, sexual behaviour, and intravenous drug use. National Academy of Sciences, Washington, DC · Zbl 1015.92036
[33] Vardavas R, Blower S (2007) The emergence of HIV transmitted resistance in Botswana: when will the WHO detection threshold be exceeded? PLoS ONE 2(1):e152. doi:10.1371/journal.pone.0000152 · doi:10.1371/journal.pone.0000152
[34] van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibrium for compartmental models of disease transmission. Math Biosci 180:29-48 · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[35] World Health Organization (2005) Summary country profile for HIV/AIDS treatment scale-up. Botswana. http://www.who.int/hiv/HIVCP_BWA.pdf. Retrived 19 April 2012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.