×

Lagrangian Rabinowitz Floer homology and twisted cotangent bundles. (English) Zbl 1312.53111

The author uses Lagrangian Rabinowitz-Floer homology to address the question of whether or not a Lagrangian submanifold can be displaced from a hypersurface via a compactly supported Hamiltonian.
\smallpagebreak The main body of the paper discusses Lagrangian Rabinowitz-Floer homology in twisted cotangent bundles. However, most of the results in the paper are also discussed for the following special case: Suppose that \((X_0,\lambda_0)\) is a Liouville domain, i.e., \(X_0\) is a compact manifold with boundary \(\Sigma := \partial X_0\), and \(d\lambda_0\) is a symplectic form on \(X_0\) such that \(\eta := \lambda_0|_\Sigma\) is a positive contact form on \(\Sigma\). Define \(X := X_0 \cup_\Sigma (\Sigma \times [1,\infty))\) and extend \(\lambda_0\) to a 1-form on \(X\) by setting \(\lambda := r \eta\) on \(\Sigma \times \{r \geq 1\}\). The pair \((X,\lambda)\) is called the completion of the Liouville domain \((X_0,\lambda_0)\).
\smallpagebreak Let \(L \subset X\) be an exact Lagrangian submanifold that is transverse to \(\Sigma\) such that \(K := \Sigma \cap L\) is a closed Legendrian submanifold of \((\Sigma, \eta)\). Let \(\theta^t: \Sigma \rightarrow \Sigma\) denote the Reeb flow of \(\eta\). The author asks the following questions.
\smallpagebreak Question 1.1: Is it possible to displace \(\Sigma\) from \(L\) via a compactly supported Hamiltonian diffeomorphism?
\smallpagebreak Question 1.2: Must there exist a Reeb chord with endpoints in \(K\)? That is, a point \(p \in K\) such that \(\theta^\tau(p) \in K\) for some \(\tau\neq 0\)?
\smallpagebreak The first main result in the paper says that a positive answer to the first question implies a positive answer to the second question.
\smallpagebreak Theorem 1.3: Suppose \((X,\lambda)\) is a completion of a Liouville domain as above, and suppose that \(L \subset X\) is an exact Lagrangian submanifold transverse to \(\Sigma\) with the property that \(K := \Sigma \cap L\) is a closed Legendrian submanifold of \((\Sigma, \eta := \lambda|_\Sigma)\). If one can displace \(\Sigma\) from \(L\) via a compactly supported Hamiltonian diffeomorphism, then there exists a Reeb chord of \(\eta\) with endpoints in \(K\).
\smallpagebreak Now let \(\psi:X \rightarrow X\) be a compactly supported Hamiltonian diffeomorphism. A point \(p \in K\) is called a relative leaf-wise intersection point of \(\psi\) if there exists a \(\tau \in {\mathbb R}\) such that \(\psi(\theta^\tau(p)) \in L\). When the answer to Question 1.1 is ‘no’, the author asks the following questions:
\smallpagebreak Question 1.5: Suppose that it is not possible to displace \(\Sigma\) from \(L\) via a compactly supported Hamiltonian diffeomorphism. Is it true that every \(\psi\) has a relative leaf-wise intersection point?
\smallpagebreak Question 1.6: When is it true that for a generic \(\psi\) there are always infinitely many relative leaf-wise intersection points?
The author addresses the above questions by studying the Lagrangian Rabinowitz-Floer homology on a twisted cotangent bundle \((T^\ast M,\omega)\), where \(\omega = d\lambda_{\mathrm{can}} + \pi^\ast \sigma\) is the canonical symplectic form twisted by the pullback of a 2-form \(\sigma\) on \(M\) via the footprint map \(\pi:T^\ast M \rightarrow M\), with a Tonelli Hamiltonian \(H:T^\ast M \rightarrow {\mathbb R}\). In this setting, the author considers a conormal bundle \(N^\ast S\), where \(\sigma|_S = 0\), in which case \(N^\ast S\) is Lagrangian submanifold of \((M,\omega)\) and there is defined a Mañé critical value \(c(H,\sigma,S) \in {\mathbb R} \cup \{\infty\}\). The author makes the following definition.
\smallpagebreak Definition 1.10: Consider a closed connected hypersurface \(\Sigma \subset T^\ast M\) and a closed connected submanifold \(S\) such that \(\sigma|_S=0\), with \(\Sigma \cap N^\ast S \neq \emptyset\) and \(\Sigma \pitchfork N^\ast S\). The pair \((\Sigma,S)\) is called a Mañé supercritical pair if there exists a Tonelli Hamiltonian \(H:T^\ast M \rightarrow {\mathbb R}\) with \(c(H,\sigma,S)< 0\), and such that \(\Sigma\) is the regular level set \(H^{-1}(0)\).
\smallpagebreak The two main theorems in the paper can now be stated.
\smallpagebreak Theorem 1.11: Suppose \((X,\omega)\) is a geometrically bounded symplectically aspherical symplectic manifold with \(c_1(TX) = 0\). Let \(\Sigma \subset X\) denote a closed connected \(\pi_1\)-injective hypersurface that encloses a compact connected component of \(X \backslash \Sigma\), and let \(L \subset X\) denote a \(\pi_1\)-injective Lagrangian submanifold transverse to \(\Sigma\) with \(\Sigma \cap L \neq \emptyset\). Let \(\widetilde{X} \rightarrow X\) denote the universal cover of \(X\). Assume there exists a primitive \(\lambda\) of the lifted symplectic form \(\widetilde{\omega}\) such that:
1. \(\sup_{\tilde{\Sigma}} |\lambda| < \infty\) and \(\inf_{\tilde{\Sigma}} \lambda(R)>0\), where \(R\) is a vector field generating ker \(\omega|_\Sigma\) pulled back to \(\widetilde{X}\).
2. \(\lambda|_{\widetilde{L}} = d\) (bounded function).
If there exists a compactly supported Hamiltonian diffeomorphism \(\psi:X \rightarrow X\) with no relative leaf-wise intersection points (e.g., if one can displace \(\Sigma\) from \(L\)), then there exists a characteristic chord of \(\Sigma\) with endpoints in \(\Sigma \cap L\).
\smallpagebreak Theorem 1.13: Let \((M^n,g)\) denote a closed connected orientable Riemannian manifold of dimension \(n \geq 2\), and let \(\sigma \in \Omega^2(M)\) denote a weakly exact 2-form whose lift to the universal cover admits a bounded primitive. Equip \(T^\ast M\) with the twisted symplectic form \(\omega := d \widetilde{\lambda}_{\mathrm{can}} + \pi^\ast \sigma\). Let \(S^d \subseteq M\) denote a closed connected submanifold such that \(\sigma|_S = 0\), and let \(\Sigma \subset T^\ast M\) denote a hypersurface such that \((\Sigma, N^\ast S)\) form a Mañé supercritical pair (c.f. Definition 1.10). Assume that one of the following two conditions hold:
1. \(d < n/2\), or \(d = n/2\) and \(n \geq 4\),
2. The double coset space \(\pi_1(S)\backslash \pi_1(M) / \pi_1(S)\) is non-trivial.
Then it is not possible to displace \(\Sigma\) from \(N^\ast S\), and the answer to Question 1.5 is ‘yes’. Moreover, if dim \(H_\ast(P(M,S);{\mathbb Z}_2) = \infty\) and the pair \((\Sigma, N^\ast S)\) is non-degenerate (this condition is satisfied generically, see Section 2.1), then a generic Hamiltonian diffeomorphism has infinitely many relative leaf-wise intersection points.
Note: \(P(M,S)\) denotes the set of all smooth paths \(q:[0,1] \rightarrow M\) with \(q(0)\) and \(q(1)\) both lying in \(S\).
The main theorems are proved by studying the Rabinowitz-Floer homology of two different functionals \({\mathcal A}\) and \({\mathcal A}_\psi\), which yield the same homology. The first functional is a Morse-Bott functional, and the author uses cascades to define its homology. The critical points of the second functional detect relative leaf-wise intersection points of \(\psi\). Thus, if \(\psi\) has no relative leaf-wise intersection points, then the Rabinowitz-Floer homology is zero. The author computes the Rabinowitz-Floer homology using a short exact sequence that relates the Lagrangian Rabinowitz-Floer homology to the Morse complex of a free time action functional.

MSC:

53D40 Symplectic aspects of Floer homology and cohomology
57R58 Floer homology
37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010)
37J50 Action-minimizing orbits and measures (MSC2010)

References:

[1] Abbas, C.: A note of V. I. Arnold’s chord conjecture. Int. Math. Res. Not. 4, 217-222 (1999) · Zbl 0920.57005 · doi:10.1155/S1073792899000112
[2] Albers, P., Frauenfelder, U.: Floer homology for negative line bundles and Reeb chords in prequantization spaces. J. Mod. Dyn. 33, 407-456 (2009) · Zbl 1190.53083
[3] Albers, P., Frauenfelder, U.: Leaf-wise intersections and Rabinowitz Floer homology. J. Topol. Anal. 21, 77-98 (2010) · Zbl 1196.53050 · doi:10.1142/S1793525310000276
[4] Albers, P., Frauenfelder, U.: Infinitely many leaf-wise intersection points on cotangent bundles. In: Global Differential Geometry, Proceedings in Mathematics. Springer (2012) · Zbl 1272.53079
[5] Arnold, V.I., Givental, A.B.: Symplectic Geometry, Dynamical Systems, Encyclopedia of Mathematical Sciences, vol. 4. Springer, Berlin (1990) · Zbl 0778.00008
[6] Abbondandolo, A., Majer, P.: Lectures on the Morse complex for infinite dimensional manifolds. In: Biran, P., Cornea, O., Lalonde, F. (eds.) Morse Theoretic Methods in Nonlinear Analysis and Symplectic Topology, Nato Science Series II: Mathematics, Physics and Chemistry, vol. 217, pp. 1-74. Springer (2006) · Zbl 1089.37007
[7] Abbondandolo, A., Portaluri, A., Schwarz, M.: The homology of path spaces and Floer homology with conormal boundary conditions. J. Fixed Point Theory Appl. 4(2), 263-293 (2008) · Zbl 1171.53344 · doi:10.1007/s11784-008-0097-y
[8] Arnold, V.I.: First steps in symplectic topology. Russ. Math. Surv. 41, 1-21 (1986) · Zbl 0649.58010 · doi:10.1070/RM1986v041n06ABEH004221
[9] Abbondandolo, A., Schwarz, M.: On the Floer homology of cotangent bundles. Commun. Pure Appl. Math. 59, 254-316 (2006) · Zbl 1084.53074 · doi:10.1002/cpa.20090
[10] Abbondandolo, A., Schwarz, M.: Estimates and computations in Rabinowitz-Floer homology. J. Topol. Anal. 1(4), 307-405 (2009) · Zbl 1190.53082 · doi:10.1142/S1793525309000205
[11] Abbondandolo, A., Schwarz, M.: A smooth pseudo-gradient for the Lagrangian action functional. Adv. Nonlinear Stud. 9, 597-623 (2009) · Zbl 1185.37145
[12] Abbondandolo, A., Schwarz, M.: Floer homology of cotangent bundles and the loop product. Geom. Topol. 14, 1569-1722 (2010) · Zbl 1201.53087 · doi:10.2140/gt.2010.14.1569
[13] Abouzaid, M., Seidel, P.: An open string analogue of Viterbo functoriality. Geom. Topol. 14, 627-718 (2010) · Zbl 1195.53106 · doi:10.2140/gt.2010.14.627
[14] Bahri, A.: Critical Points at Infinity in Some Variational Problems, Pitman Research Notes in Mathematics, vol. 182. Longman, London (1989) · Zbl 0676.58021
[15] Bourgeois, F., Ekholm, T., Eliashberg, Y.: Effect of Legendrian surgery. arXiv:0911.0026 (2009) · Zbl 1322.53080
[16] Bourgeois, F., Oancea, A.: Symplectic homology, autonomous Hamiltonians, and Morse-Bott moduli spaces. Duke Math. J. 146(1), 71-174 (2009) · Zbl 1158.53067 · doi:10.1215/00127094-2008-062
[17] Bounya, C.: An exact triangle for the wrapped Floer homology of the Lagrangian Rabinowitz functional, In preparation
[18] Bourgeois, F.; Eliashberg, Y. (ed.); Khesin, B. (ed.); Lalonde, F. (ed.), A Morse-Bott approach to contact homology, No. 35 (2003), USA · Zbl 1046.57017
[19] Burns, K., Paternain, G.P.: Anosov magnetic flows, critical values and topological entropy. Nonlinearity 15, 281-314 (2002) · Zbl 1161.37337 · doi:10.1088/0951-7715/15/2/305
[20] Cieliebak, K., Frauenfelder, U.: A Floer homology for exact contact embeddings. Pac. J. Math. 239(2), 216-251 (2009) · Zbl 1221.53112 · doi:10.2140/pjm.2009.239.251
[21] Cieliebak, K., Frauenfelder, U., Oancea, A.: Rabinowitz Floer homology and symplectic homology. Ann. Inst. Fourier 43(6), 957-1015 (2010) · Zbl 1213.53105
[22] Cieliebak, K., Frauenfelder, U., Paternain, G.P.: Symplectic topology of Mañé’s critical values. Geom. Topol. 14, 1765-1870 (2010) · Zbl 1239.53110
[23] Cieliebak, K., Ginzburg, V., Kerman, E.: Symplectic homology and periodic orbits near symplectic submanifolds. Comment Math. Helv. 74, 554-581 (2004) · Zbl 1073.53118
[24] Contreras, G., Iturriaga, R.: Global Minimizers of Autonomous Lagrangians, Colloqio Brasileiro de Matematica, vol. 22. IMPA, Rio de Janeiro (1999) · Zbl 0957.37065
[25] Cieliebak, K.: Handle attaching in symplectic homology and the chord conjecture. J. Eur. Math. Soc. 4(2), 115-142 (2002) · Zbl 1012.53066 · doi:10.1007/s100970100036
[26] Contreras, G., Iturriaga, R., Paternain, G.P., Paternain, M.: The Palais-Smale condition and Mañé’s critical values. Ann. Henri Poincaré 1(4), 655-684 (2000) · Zbl 0986.58005
[27] Contreras, G.: The Palais-Smale condition on contact type energy levels for convex Lagrangian systems. Calc. Var. Partial Differ. Eqs. 27(3), 321-395 (2006) · Zbl 1105.37037 · doi:10.1007/s00526-005-0368-z
[28] Duistermaat, J.J.: On the Morse index in variational calculus. Adv. Math. 21, 173-195 (1976) · Zbl 0361.49026 · doi:10.1016/0001-8708(76)90074-8
[29] Frauenfelder, U.: The Arnold-Givental conjecture and moment Floer homology. Int. Math. Res. Not. 42, 2179-2269 (2004) · Zbl 1088.53058 · doi:10.1155/S1073792804133941
[30] Ginzburg, V.; Thomas, CB (ed.), On closed trajectories of a charge in a magnetic field, No. 8, 131-148 (1996), Cambridge · Zbl 0873.58034
[31] Givental, A.: Nonlinear generalization of the Maslov index. Adv. Sov. Math. 1, 71-103 (1990) · Zbl 0728.53024
[32] Givental, A.: The nonlinear Maslov index, Geometry of Low-Dimensional manifolds. In: Donaldson, S. (ed.) LMS Lecture Note Series, vol. 151, pp. 35-43. Cambridge University Press, Cambridge (1990) · Zbl 1073.53118
[33] Hutchings, M., Taubes, C.: Proof of the Arnold chord conjecture in three dimensions I. Math. Res. Lett. 18(2), 295-313 (2011) · Zbl 1263.53080 · doi:10.4310/MRL.2011.v18.n2.a8
[34] Hutchings, M., Taubes, C.: Proof of the rnold chord conjecture in three dimensions II. arXiv:1111.3324 (2011) · Zbl 1263.53080
[35] Hofer, H., Wysocki, K., Zehnder, E.: The dynamics on three-dimensional strictly convex energy surfaces. Ann. Math. 148(1), 197-289 (1998) · Zbl 0944.37031 · doi:10.2307/120994
[36] Mañé, R.: Lagrangian Flows: The Dynamics of Globally Minimizing Orbits, Pitman Research Notes in Math., vol. 362, pp. 120-131. Longman, London (1996) · Zbl 0870.58026
[37] Merry, W.J.: On the Rabinowitz Floer homology of twisted cotangent bundles. Calc. Var. Partial Differ. Eqs. 42(3-4), 355-404 (2011) · Zbl 1239.53111 · doi:10.1007/s00526-011-0391-1
[38] Merry, W. J.: Rabinowitz Floer homology and Mañé supercritical hypersurfaces, Ph.D. thesis. University of Cambridge. Available online at http://www.math.ethz.ch/merrywi (2011) · Zbl 1185.37145
[39] Macarini, L., Merry, W.J., Paternain, G.P.: On the growth rate of leaf-wise intersections. J. Symplectic Geom. 10, 601-653 (2012) · Zbl 1266.53076 · doi:10.4310/JSG.2012.v10.n4.a5
[40] Mohnke, K.: Holomorphic disks and the Chord conjecture. Ann. Math. 154, 219-222 (2001) · Zbl 1007.53065 · doi:10.2307/3062116
[41] Moser, J.: A fixed point theorem in symplectic geometry. Acta. Math. 141(1-2), 17-34 (1978) · Zbl 0382.53035 · doi:10.1007/BF02545741
[42] Merry, W.J., Paternain, G.P.: Index computations in Rabinowitz Floer homology. J. Fixed Point Theory Appl. 10(1), 88-111 (2011) · Zbl 1242.37012 · doi:10.1007/s11784-011-0047-y
[43] McDuff, D., Salamon, D.: J-holomorphic Curves and Symplectic Topology, vol. 52. Colloquim Publications, American Mathematical Society, Providence (2012) · Zbl 1272.53002
[44] Paternain, G.P.: Magnetic rigidity of horocycle flows. Pac. J. Math. 225, 301-323 (2006) · Zbl 1116.37020 · doi:10.2140/pjm.2006.225.301
[45] Pozniak, M.; Eliashberg, Y. (ed.); Fuchs, D. (ed.); Ratiu, T. (ed.); Weinstein, A. (ed.), Floer homology, Novikov rings and clean intersections, No. 196, 119-181 (1999), Providence · Zbl 0948.57025
[46] Ritter, A.F.: Topological quantum field theory structure on symplectic cohomology. J. Topol. 6(2), 391-489 (2013) · Zbl 1298.53093
[47] Robbin, J., Salamon, D.: The Maslov index for paths. Topology 32, 827-844 (1993) · Zbl 0798.58018 · doi:10.1016/0040-9383(93)90052-W
[48] Salamon, D.; Eliashberg, Y. (ed.); Traynor, L. (ed.), Lectures on Floer homology, No. 7, 143-225 (1999), Providence
[49] Schwarz, M.: On the action spectrum for closed symplectically aspherical manifolds. Pac. J. Math. 193(2), 419-461 (2000) · Zbl 1023.57020 · doi:10.2140/pjm.2000.193.419
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.