×

Threshold dynamics of an SIR epidemic model with hybrid of multigroup and patch structures. (English) Zbl 1312.34086

Summary: We formulate an SIR epidemic model with hybrid of multigroup and patch structures, which can be regarded as a model for the geographical spread of infectious diseases or a multi-group model with perturbation. We show that if a threshold value, which corresponds to the well-known basic reproduction number \(R_0\), is less than or equal to unity, then the disease-free equilibrium of the model is globally asymptotically stable. We also show that if the threshold value is greater than unity, then the model is uniformly persistent and has an endemic equilibrium. Moreover, using a Lyapunov functional technique, we obtain a sufficient condition under which the endemic equilibrium is globally asymptotically stable. The sufficient condition is satisfied if the transmission coefficients in the same groups are large or the per capita recovery rates are small.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34D05 Asymptotic properties of solutions to ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
34D23 Global stability of solutions to ordinary differential equations
92D30 Epidemiology

References:

[1] R. M. Anderson, <em>Infectious Diseases of Humans</em>,, Oxford University (1991)
[2] J. Arino, Diseases in metapopulations,, in Modeling and Dynamics of Infectious Diseases (eds. Z. Ma, 65 (2009) · doi:10.1142/7223
[3] M. S. Bartlet, Deterministic and stochastic models for recurrent epidemics,, in Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 81 (1956) · Zbl 0070.15004
[4] A. Berman, <em>Nonnegative Matrices in the Mathematical Sciences</em>,, Academic Press (1979) · Zbl 0484.15016 · doi:10.1007/978-1-4612-0873-0
[5] H. Chen, Global stability of delay multigroup epidemic models with group mixing nonlinear incidence rates,, Appl. Math. Comput., 218, 4391 (2011) · Zbl 1238.92038 · doi:10.1016/j.amc.2011.10.015
[6] O. Diekmann, <em>Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation</em>,, 1st edition (2000) · Zbl 0997.92505 · doi:10.1007/978-1-4612-0873-0
[7] M. J. Faddy, A note on the behavior of deterministic spatial epidemics,, Math. Biosci., 80, 19 (1986) · Zbl 0592.92021 · doi:10.1016/0025-5564(86)90064-7
[8] H. I. Freedman, Uniform persistence and flows near a closed positively invariant set,, J. Dynam. Diff. Equat., 6, 583 (1994) · Zbl 0811.34033 · doi:10.1007/BF02218848
[9] H. Guo, Global stability of the endemic equilibrium of multigroup SIR epidemic models,, Canadian Appl. Math. Quart., 14, 259 (2006) · Zbl 1148.34039
[10] H. Guo, A graph-theoretic approach to the method of global Lyapunov functions,, Proc. Amer. Math. Soc., 136, 2793 (2008) · Zbl 1155.34028 · doi:10.1090/S0002-9939-08-09341-6
[11] J. M. Hyman, Modeling the spread of influenza among cities,, in Bioterrorism (eds. H. T. Banks and C. Castillo-Chavez), 211 (2003)
[12] Y. Jin, The effect of population dispersal on the spread of a disease,, J. Math. Anal. Appl., 308, 343 (2005) · Zbl 1065.92044 · doi:10.1016/j.jmaa.2005.01.034
[13] A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic model,, Math. Med. Biol., 21, 75 (2004) · Zbl 1169.92041 · doi:10.1007/s11538-008-9352-z
[14] T. Kuniya, Global stability of a multi-group SIS epidemic model for population migration,, Discrete Cont. Dyn. Sys. Series B, 19, 1105 (2014) · Zbl 1308.34065 · doi:10.3934/dcdsb.2014.19.1105
[15] J. P. LaSalle, <em>The Stability of Dynamical Systems</em>,, SIAM (1976) · Zbl 0364.93002 · doi:10.1007/978-1-4612-0873-0
[16] M. Y. Li, Global dynamics of a SEIR model with varying total population size,, Math. Biosci., 160, 191 (1999) · Zbl 0974.92029 · doi:10.1016/S0025-5564(99)00030-9
[17] M. Y. Li, Global stability of an epidemic model in a patchy environment,, Canadian Appl. Math. Quart., 17, 175 (2009) · Zbl 1216.34054
[18] M. Y. Li, Global-stability problem for coupled systems of differential equations on networks,, J. Diff. Equat., 284, 1 (2010) · Zbl 1190.34063 · doi:10.1016/j.jde.2009.09.003
[19] M. Y. Li, Global stability of multi-group epidemic models with distributed delays,, J. Math. Anal. Appl., 361, 38 (2010) · Zbl 1175.92046 · doi:10.1016/j.jmaa.2009.09.017
[20] Y. Muroya, Global stability of extended multi-group SIR epidemic models with patches through migration and cross patch infection,, Acta Mathematica Scientia, 33, 341 (2013) · Zbl 1289.34221 · doi:10.1016/S0252-9602(13)60003-X
[21] H. Shu, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission,, Nonlinear Anal. RWA, 13, 1581 (2012) · Zbl 1254.92085 · doi:10.1016/j.nonrwa.2011.11.016
[22] H. L. Smith, <em>The Theory of the Chemostat: Dynamics of Microbial Competition</em>,, Cambridge University Press (1995) · Zbl 0860.92031 · doi:10.1007/978-1-4612-0873-0
[23] R. Sun, Global stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence,, Comput. Math. Appl., 60, 2286 (2010) · Zbl 1205.34066 · doi:10.1016/j.camwa.2010.08.020
[24] P. van den Driessche, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180, 29 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[25] R. S. Varga, <em>Matrix Iterative Analysis</em>,, Prentice-Hall (1962) · Zbl 0133.08602 · doi:10.1007/978-1-4612-0873-0
[26] W. Wang, An epidemic model in a patchy environment,, Math. Biosci., 190, 97 (2004) · Zbl 1048.92030 · doi:10.1016/j.mbs.2002.11.001
[27] Z. Yuan, Global stability of epidemiological models with group mixing and nonlinear incidence rates,, Nonlinear Anal. RWA, 11, 995 (2010) · Zbl 1254.34075 · doi:10.1016/j.nonrwa.2009.01.040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.