×

Numerical analysis for spread option pricing model of markets with finite liquidity: first-order feedback model. (English) Zbl 1311.91195

Summary: We discuss the numerical analysis and the pricing and hedging of European Spread options on correlated assets when, in contrast to the standard framework and consistent with a market with imperfect liquidity, the option trader’s trading in the stock market has a direct impact on one of the stocks price. We consider a first-order feedback model which leads to a linear partial differential equation. The Peaceman-Rachford scheme is applied as an alternating direction implicit method to solve the equation numerically. We also discuss the stability and convergence of this numerical scheme. Finally, we provide a numerical analysis of the effect of the illiquidity in the underlying asset market on the replication of an European Spread option; compared to the Black-Scholes case, a trader generally buys less stock to replicate a call option.

MSC:

91G60 Numerical methods (including Monte Carlo methods)
91G20 Derivative securities (option pricing, hedging, etc.)
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35K15 Initial value problems for second-order parabolic equations
Full Text: DOI

References:

[1] Back J., Commodity price dynamics and derivatives valuation: A Review (2012)
[2] DOI: 10.1086/260062 · Zbl 1092.91524 · doi:10.1086/260062
[3] DOI: 10.1086/296288 · doi:10.1086/296288
[4] DOI: 10.1086/296616 · doi:10.1086/296616
[5] DOI: 10.3905/jod.1994.407896 · doi:10.3905/jod.1994.407896
[6] DOI: 10.1111/j.1540-6261.1982.tb03573.x · doi:10.1111/j.1540-6261.1982.tb03573.x
[7] DOI: 10.1016/0898-1221(88)90150-2 · Zbl 0654.65072 · doi:10.1016/0898-1221(88)90150-2
[8] D.M. Dang, C. Christara, K. Jackson, and A. Lakhany,An efficient numerical PDE approach for pricing foreign exchange interest rate hybrid derivatives, preprint (2012). Available at SSRN 2028519.
[9] Duffie D., Dynamic Asset Pricing Theory (2010) · Zbl 1140.91041
[10] DOI: 10.1002/9781118673447 · doi:10.1002/9781118673447
[11] Fichera G., Atti della Accademia Nazionale dei Lincei. Memorie. Classe di Scienze Fisiche, Matematiche e Naturali, Serie VIII (in Italian 5 (1) pp 1– (1956)
[12] DOI: 10.1007/s007800050035 · Zbl 0894.90017 · doi:10.1007/s007800050035
[13] DOI: 10.1111/j.1540-6261.1990.tb05114.x · doi:10.1111/j.1540-6261.1990.tb05114.x
[14] DOI: 10.1002/(SICI)1096-9934(199808)18:5<581::AID-FUT5>3.0.CO;2-1 · doi:10.1002/(SICI)1096-9934(199808)18:5<581::AID-FUT5>3.0.CO;2-1
[15] DOI: 10.1002/(SICI)1096-9934(199912)19:8<931::AID-FUT5>3.0.CO;2-L · doi:10.1002/(SICI)1096-9934(199912)19:8<931::AID-FUT5>3.0.CO;2-L
[16] DOI: 10.1137/080736119 · Zbl 1285.91126 · doi:10.1137/080736119
[17] T. Haentjens,ADI finite difference schemes for the Heston–Hull–White PDE. No. 1111.4087, preprint (2011). Available at arXiv.org.
[18] DOI: 10.1016/S0168-9274(01)00152-0 · Zbl 1004.65095 · doi:10.1016/S0168-9274(01)00152-0
[19] DOI: 10.1007/978-3-662-09017-6 · doi:10.1007/978-3-662-09017-6
[20] In’t Hout K.J., Int. J. Numer. Anal. Model 7 (2) pp 303– (2010)
[21] DOI: 10.1016/j.matcom.2011.01.003 · Zbl 1255.65022 · doi:10.1016/j.matcom.2011.01.003
[22] DOI: 10.1002/fut.3990110104 · doi:10.1002/fut.3990110104
[23] Kirk E., Managing Energy Price Risk pp 71– (1995)
[24] DOI: 10.1142/4694 · doi:10.1142/4694
[25] DOI: 10.1016/j.jedc.2004.11.004 · Zbl 1198.91210 · doi:10.1016/j.jedc.2004.11.004
[26] DOI: 10.1111/j.1540-6261.1978.tb03397.x · doi:10.1111/j.1540-6261.1978.tb03397.x
[27] DOI: 10.1093/comjnl/13.1.81 · Zbl 0193.13001 · doi:10.1093/comjnl/13.1.81
[28] DOI: 10.1006/jcph.1996.0120 · Zbl 0854.65072 · doi:10.1006/jcph.1996.0120
[29] New York Mercantile Exchange, Crack Spread Handbook (2011)
[30] DOI: 10.2307/1885541 · doi:10.2307/1885541
[31] DOI: 10.1016/j.jbankfin.2010.05.010 · doi:10.1016/j.jbankfin.2010.05.010
[32] DOI: 10.1137/0103003 · Zbl 0067.35801 · doi:10.1137/0103003
[33] Pospisil L., J. Comput. Financ 12 (2) pp 59– (2008) · Zbl 1175.91200 · doi:10.21314/JCF.2008.177
[34] Randall C., PDE Techniques for Pricing Derivatives with Exotic Path Dependencies or Exotic Processes (2002)
[35] DOI: 10.1111/j.1540-6261.1997.tb02721.x · doi:10.1111/j.1540-6261.1997.tb02721.x
[36] DOI: 10.1287/mnsc.46.7.893.12034 · doi:10.1287/mnsc.46.7.893.12034
[37] Shidfar A., Numerical analysis for Spread option pricing model in illiquid underlying asset market: full feedback model
[38] Strikwerda J., Finite Difference Schemes and Partial Differential Equations (2007) · Zbl 0681.65064
[39] DOI: 10.1016/j.apnum.2005.11.011 · Zbl 1175.65104 · doi:10.1016/j.apnum.2005.11.011
[40] Welfert B.D., Appl. Numer. Math 59 (3) pp 677– (2009)
[41] DOI: 10.1137/S0036139996308534 · Zbl 1136.91407 · doi:10.1137/S0036139996308534
[42] DOI: 10.1016/S0168-9274(02)00194-0 · Zbl 1061.76051 · doi:10.1016/S0168-9274(02)00194-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.