×

Linearization stability of the Einstein constraint equations on an asymptotically hyperbolic manifold. (English) Zbl 1311.83007

Summary: We study the linearization stability of the Einstein constraint equations on an asymptotically hyperbolic manifold. In particular, we prove that these equations are linearization stable in the neighborhood of vacuum solutions for a nonpositive cosmological constant and of Friedman-Lemaître-Robertson-Walker spaces in a certain range of decays. We also prove that this result is no longer true for faster decays. The construction of the counterexamples is based on a new construction of transverse traceless tensors on the Euclidean space and on positive energy theorems.{
©2010 American Institute of Physics}

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory

References:

[1] Andersson, L.; Chruściel, P. T., Solutions of the constraint equations in general relativity satisfying “hyperboloidal boundary conditions, Diss. Math., 355, 100 (1996) · Zbl 0873.35101
[2] Adams, R. A., Sobolev Spaces, 65 (1975) · Zbl 0314.46030
[3] Arms, J. M.; Marsden, J. E., The absence of Killing fields is necessary for linearization stability of Einstein’s equations, Indiana Univ. Math. J., 28, 119 (1979) · Zbl 0405.53046 · doi:10.1512/iumj.1979.28.28008
[4] Bartnik, R., The mass of an asymptotically flat manifold, Commun. Pure Appl. Math., 39, 661 (1986) · Zbl 0598.53045 · doi:10.1002/cpa.3160390505
[5] Beig, R., Mathematics of Gravitation, 41 (1996)
[6] Besse, A. L., Einstein Manifolds, 10 (1987) · Zbl 0613.53001
[7] Bruna, L.; Girbau, J., Linearization stability of the Einstein equation for Robertson-Walker models. I, J. Math. Phys., 40, 5117 (1999) · Zbl 0982.83008 · doi:10.1063/1.533019
[8] Bruna, L.; Girbau, J., Linearization stability of the Einstein equation for Robertson-Walker models. II, J. Math. Phys., 40, 5131 (1999) · Zbl 0982.83009 · doi:10.1063/1.533020
[9] Bruna, L.; Girbau, J., Laplacian in the hyperbolic space \(<mml:math display=''inline`` overflow=''scroll``>\) and linearization stability of the Einstein equation for Robertson-Walker models, J. Math. Phys., 46, 072501 (2005) · Zbl 1110.58025 · doi:10.1063/1.1941087
[10] Bartnik, R.; Isenberg, J., The Einstein Equations and the Large Scale Behavior of Gravitational Fields, 1-38 (2004) · Zbl 1073.83009
[11] Choquet-Bruhat, Y.; Deser, S., On the stability of flat space, Ann. Phys., 81, 165 (1973) · Zbl 0265.35059 · doi:10.1016/0003-4916(73)90484-3
[12] Choquet-Bruhat, Y.; Fisher, A.; Marsden, J., Équations des contraintes sur une variété non compacte, C. R. Hebd. Seances Acad. Sci., Ser. A B, Sci. Math. Sci. Phys, 284, A975 (1977) · Zbl 0364.58010
[13] Chruściel, P. T.; Delay, E., On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications, Mém. Soc. Math. Fr. (N.S.), 94, 1 (2003) · Zbl 1058.83007
[14] Chruściel, P. T.; Delay, E., Manifold structures for sets of solutions of the general relativistic constraint equations, J. Geom. Phys., 51, 442 (2004) · Zbl 1073.83011 · doi:10.1016/j.geomphys.2003.12.002
[15] Chruściel, P. T.; Maerten, D., Killing vectors in asymptotically flat space-times. II. Asymptotically translational Killing vectors and the rigid positive energy theorem in higher dimensions, J. Math. Phys., 47, 022502 (2006) · Zbl 1111.83014 · doi:10.1063/1.2167809
[16] Corvino, J., On the existence and stability of the Penrose compactification, Ann. Henri Poincare, 8, 597 (2007) · Zbl 1120.83008 · doi:10.1007/s00023-006-0317-1
[17] Dain, S.; Friedrich, H., Asymptotically flat initial data with prescribed regularity at infinity, Commun. Math. Phys., 222, 569 (2001) · Zbl 1056.58009 · doi:10.1007/s002200100524
[18] Fischer, A. E.; Marsden, J. E., Linearization stability of the Einstein equations, Bull. Am. Math. Soc., 79, 997 (1973) · Zbl 0274.58003 · doi:10.1090/S0002-9904-1973-13299-9
[19] Friedrich, H.; Rendall, A., The Cauchy problem for the Einstein equations, Lect. Notes Phys., 540, 127 (2000) · Zbl 1006.83003 · doi:10.1007/3-540-46580-4_2
[20] Gicquaud, R., J. Math. Pures Appl.
[21] Hawking, S. W.; Ellis, G. F. R., The Large Scale Structure of Space-Time (1973) · Zbl 0265.53054 · doi:10.1017/CBO9780511524646
[22] Kastor, D.; Traschen, J. H., Linear instability of nonvacuum space-times, Phys. Rev. D, 47, 480 (1993) · doi:10.1103/PhysRevD.47.480
[23] Lee, J. M., Fredholm operators and Einstein metrics on conformally compact manifolds, Mem. Am. Math. Soc., 183, 864 (2006) · Zbl 1112.53002
[24] Maerten, D., Positive energy-momentum theorem for AdS-asymptotically hyperbolic manifolds, Ann. Henri Poincare, 7, 975 (2006) · Zbl 1255.83021 · doi:10.1007/s00023-006-0273-9
[25] Moncrief, V., Spacetime symmetries and linearization stability of the Einstein equations. I, J. Math. Phys., 16, 493 (1975) · Zbl 0314.53035 · doi:10.1063/1.522572
[26] Moncrief, V., Space-time symmetries and linearization stability of the Einstein equations. II, J. Math. Phys., 17, 1893 (1976) · doi:10.1063/1.522814
[27] Saraykar, R. V.; Joshi, N. E., Linearization stability of Einstein equations coupled with self-gravitating scalar fields, J. Math. Phys., 22, 343 (1981) · Zbl 0476.35011 · doi:10.1063/1.524885
[28] Saraykar, R. V.; Joshi, N. E., Erratum: Linearization stability of Einstein equations coupled with self-gravitating scalar fields [J. Math. Phys. 22, 343 (1981)], J. Math. Phys., 23, 1738 (1982) · Zbl 0476.35011 · doi:10.1063/1.525544
[29] Wald, R. M., General Relativity (1984) · Zbl 0549.53001
[30] Wolf, J. A., Spaces of Constant Curvature (1984) · Zbl 0556.53033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.