×

A variational multiscale method with bubble stabilization for the Oseen problem based on two local Gauss integrations. (English) Zbl 1311.76023

Summary: We present a variational multiscale method for the Oseen equation with higher Reynolds number. Based on the mini-element discretization, the stabilization term only depends on bubble functions, and the best algorithmic feature of our method is using two local Gauss integrations to replace projection operator without adding any extra storage. A priori error estimate is proved and the effectiveness of the method is illustrated through several numerical experiments.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
76M10 Finite element methods applied to problems in fluid mechanics

Software:

FreeFem++
Full Text: DOI

References:

[1] Girault, V.; Raviart, P.-A., Finite Element Methods for the Navier-Stokes Equations: Theory and Algorithms, Springer Ser. Comput. Math, vol. 5 (1986), Springer: Springer Berlin · Zbl 0585.65077
[2] Gunzburger, M., Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice and Algorithms (1989), Academic Press: Academic Press Boston · Zbl 0697.76031
[3] Gunzburger, M.; Nicolaides, R., Incompressible Computational Fluid Dynamics: Trends and Advances (1993), Cambridge University Press: Cambridge University Press Cambridge, New York · Zbl 1190.76004
[4] Franca, L. P.; Frey, S. L.; Madureira, A. L., Two- and three-dimensional simulations of the incompressible Navier-Stokes equations based on stabilized methods, ((1994), John Wiley and Sons, Ltd.), 121-128
[5] Franca, L. P.; Hughes, T. J.R., Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 105, 285-298 (1993) · Zbl 0771.76037
[6] Hughes, T. J.R.; Franca, L. P.; Hulbert, G. M., A new finite element formulation for computational fluid dynamics. VIII. The Galerkin/least-squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Eng., 73, 173-189 (1989) · Zbl 0697.76100
[7] Brezzi, F.; Russo, A., Choosing bubbles for advection-diffusion problems, Math. Models Methods Appl. Sci., 4, 571-587 (1994) · Zbl 0819.65128
[8] Franca, L. P.; Russo, A., Deriving upwinding, mass lumping and selective reduced integration by residual-free bubbles, Appl. Math. Lett., 9, 83-88 (1996) · Zbl 0903.65082
[9] Brezzi, F.; Hughes, T. J.R.; Marini, L. D.; Russo, A.; Süli, E., A priori error analysis of residual-free bubbles for advection-diffusion problems, SIAM J. Numer. Anal., 36, 1933-1948 (1999) · Zbl 0947.65115
[10] Franca, L. P.; Nesliturk, A., On a two-level finite element method for the incompressible Navier-Stokes equations, Int. J. Numer. Methods Eng., 52, 433-453 (2001) · Zbl 1002.76066
[11] Braack, M.; Burman, E., Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method, SIAM J. Numer. Anal., 43, 2544-2566 (2006) · Zbl 1109.35086
[12] Matthies, G.; Skrzypacz, P.; Tobiska, L., A unified convergence analysis for local projection stabilisations applied to the Oseen problem, M2AN Math. Model. Numer. Anal., 41, 713-742 (2007) · Zbl 1188.76226
[13] Guermond, J.-L., Stabilization of Galerkin approximations of transport equations by subgrid modeling, M2AN Math. Model. Numer. Anal., 33, 1293-1316 (1999) · Zbl 0946.65112
[14] Hughes, T. J.R.; Mazzei, L.; Oberai, A. A., The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence, Phys. Fluids, 13, 505-511 (2001) · Zbl 1184.76236
[15] Hughes, T.; Mazzei, L.; Jansen, K., Large eddy simulation and the variational multiscale method, Comput. Vis. Sci., 3, 47-59 (2000) · Zbl 0998.76040
[16] Hughes, T. J.R., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid-scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Eng., 127, 387-401 (1995) · Zbl 0866.76044
[17] Layton, W., A connection between subgrid scale eddy viscosity and mixed methods, Appl. Math. Comput., 133, 147-157 (2002) · Zbl 1024.76026
[18] Kaya, S.; Riviere, B., A twogrid stabilization method for solving the steadystate Navier-Stokes equations, Numer. Methods PDEs Equ., 3, 728-743 (2006) · Zbl 1089.76034
[19] Kaya, S.; layton, W.; Riviere, B., Subgrid stabilized defect correction methods for the Navier-Stokes equations, SIAM Numer. Anal., 44, 1639-1654 (2006) · Zbl 1124.76029
[20] John, V.; Kaya, S., Finite element error analysis of a variational multiscale method for the Navier-Stokes equations, Adv. Comput. Math., 28, 43-61 (2008) · Zbl 1126.76030
[21] John, V.; Kaya, S., A finite element variational multiscale method for the Navier-Stokes equations, SIAM J. Sci. Comput., 26, 1485-1503 (2005) · Zbl 1073.76054
[22] John, V.; Kaya, S.; Layton, W., A two-level variational multiscale method for convection-dominated convection-diffusion equations, Comput. Methods Appl. Mech. Eng., 195, 4594-4603 (2006) · Zbl 1124.76028
[23] Zheng, H. B.; Hou, Y. R.; Shi, F., Adaptive variational multiscale methods for incompressible flows based on two local Gauss integrations, J. Comput. Phys., 229, 7030-7041 (2010) · Zbl 1425.76067
[24] Song, L. N.; Hou, Y. R.; Zheng, H. B., A variational multiscale method based on bubble functions for convection-dominated convection-diffusion equation, Appl. Math. Comput., 217, 2226-2237 (2010) · Zbl 1342.65221
[25] Hylin, E.; McDonough, J., Chaotic small-scale velocity fields as prospective models for unresolved turbulence in an additive decomposition of the Navier-Stokes equations, Int. J. Fluid Mech. Res., 26, 539-567 (1999)
[26] Zhang, Y.; He, Y. N., Assessment of subgrid-scale models for the incompressible Navier-Stokes equations, J. Comput. Appl. Math., 234, 593-604 (2009) · Zbl 1273.76082
[27] Masud, A.; Khurram, R. A., A multiscale finite element method for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 195, 1750-1777 (2006) · Zbl 1178.76233
[28] Arnold, D. N.; Brezzi, F.; Fortin, M., A stable finite element for the Stokes equations, Calcolo, 23, 337-344 (1984) · Zbl 0593.76039
[29] Pierre, R., Simple \(C^0\) approximation of incompressible flow, Comput. Methods Appl. Mech. Eng., 68, 205-227 (1988) · Zbl 0628.76040
[30] Li, J.; He, Y. N., A stabilized finite element method based on two local Gauss integrations for the Stokes equations, J. Comput. Appl. Math., 214, 58-65 (2008) · Zbl 1132.35436
[31] Zheng, H. B.; Hou, Y. R.; shi, F.; Song, L. N., A finite element variational multiscale method for incompressible flows based on two local Gauss integrations, J. Comput. Phys., 228, 5961-5971 (2009) · Zbl 1168.76028
[32] Adams, R. A., Sobolev Spaces (1975), Academic Press: Academic Press New York · Zbl 0186.19101
[33] Heywood, J.; Rannacher, R., Finite element approximation of the nonstationary Navier-Stokes problem I: Regularity of solutions and second order error estimates for spatial discretization, SIAM Numer. Anal., 19, 275-311 (1982) · Zbl 0487.76035
[34] FreeFem++, version 2.17.1. <http://www.freefem.org/>; FreeFem++, version 2.17.1. <http://www.freefem.org/>
[35] Ghia, U.; Ghia, K. N.; Shin, C. T., High-resolutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 387-411 (1982) · Zbl 0511.76031
[36] Burman, E.; Hansbo, P., A stabilized non-conforming finite element method for incompressible flow, Comput. Methods Appl. Mech. Eng., 195, 2881-2899 (2006) · Zbl 1115.76042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.