×

Nonlinear Langevin equation of Hadamard-Caputo type fractional derivatives with nonlocal fractional integral conditions. (English) Zbl 1311.34020

Summary: We study existence and uniqueness of solutions for a problem consisting of nonlinear Langevin equation of Hadamard-Caputo type fractional derivatives with nonlocal fractional integral conditions. A variety of fixed point theorems are used, such as Banach’s fixed point theorem, Krasnoselskii’s fixed point theorem, Leray-Schauder’s nonlinear alternative, and Leray-Schauder’s degree theory. Enlightening examples illustrating the obtained results are also presented.

MSC:

34A08 Fractional ordinary differential equations
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations

References:

[1] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach Science, Yverdon, Switzerland, 1993. · Zbl 0818.26003
[2] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[3] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, The Netherlands, 2006. · Zbl 1092.45003
[4] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, Complexity, Nonlinearity and Chaos, World Scientific, Boston, Mass, USA, 2012. · Zbl 1248.26011
[5] R. P. Agarwal, Y. Zhou, and Y. He, “Existence of fractional neutral functional differential equations,” Computers & Mathematics with Applications, vol. 59, no. 3, pp. 1095-1100, 2010. · Zbl 1189.34152 · doi:10.1016/j.camwa.2009.05.010
[6] D. B\ualeanu, O. G. Mustafa, and R. P. Agarwal, “On LP-solutions for a class of sequential fractional differential equations,” Applied Mathematics and Computation, vol. 218, no. 5, pp. 2074-2081, 2011. · Zbl 1235.34008 · doi:10.1016/j.amc.2011.07.024
[7] B. Ahmad and J. J. Nieto, “Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions,” Boundary Value Problems, vol. 2011, article 36, p. 9, 2011. · Zbl 1275.45004 · doi:10.1186/1687-2770-2011-36
[8] B. Ahmad, S. K. Ntouyas, and A. Alsaedi, “New existence results for nonlinear fractional differential equations with three-point integral boundary conditions,” Advances in Difference Equations, vol. 2011, Article ID 107384, 11 pages, 2011. · Zbl 1204.34005 · doi:10.1155/2011/107384
[9] D. O’Regan and S. Stan\vek, “Fractional boundary value problems with singularities in space variables,” Nonlinear Dynamics, vol. 71, no. 4, pp. 641-652, 2013. · Zbl 1268.34023
[10] B. Ahmad, S. K. Ntouyas, and A. Alsaedi, “A study of nonlinear fractional differential equations of arbitrary order with Riemann-Liouville type multistrip boundary conditions,” Mathematical Problems in Engineering, vol. 2013, Article ID 320415, 9 pages, 2013. · Zbl 1296.34011 · doi:10.1155/2013/320415
[11] B. Ahmad and J. J. Nieto, “Boundary value problems for a class of sequential integrodifferential equations of fractional order,” Journal of Function Spaces and Applications, vol. 2013, Article ID 149659, 8 pages, 2013. · Zbl 1267.45018 · doi:10.1155/2013/149659
[12] L. Zhang, B. Ahmad, G. Wang, and R. P. Agarwal, “Nonlinear fractional integro-differential equations on unbounded domains in a Banach space,” Journal of Computational and Applied Mathematics, vol. 249, pp. 51-56, 2013. · Zbl 1302.45019 · doi:10.1016/j.cam.2013.02.010
[13] X. Liu, M. Jia, and W. Ge, “Multiple solutions of a p-Laplacian model involving a fractional derivative,” Advances in Difference Equations, vol. 2013, article 126, 2013. · Zbl 1390.34059
[14] J. Hadamard, “Essai sur l’etude des fonctions donnees par leur developpment de Taylor,” Journal de Mathématiques Pures et Appliquées, vol. 8, pp. 101-186, 1892. · JFM 24.0359.01
[15] P. L. Butzer, A. A. Kilbas, and J. J. Trujillo, “Compositions of Hadamard-type fractional integration operators and the semigroup property,” Journal of Mathematical Analysis and Applications, vol. 269, no. 2, pp. 387-400, 2002. · Zbl 1027.26004 · doi:10.1016/S0022-247X(02)00049-5
[16] P. L. Butzer, A. A. Kilbas, and J. J. Trujillo, “Fractional calculus in the Mellin setting and Hadamard-type fractional integrals,” Journal of Mathematical Analysis and Applications, vol. 269, no. 1, pp. 1-27, 2002. · Zbl 0995.26007 · doi:10.1016/S0022-247X(02)00001-X
[17] P. L. Butzer, A. A. Kilbas, and J. J. Trujillo, “Mellin transform analysis and integration by parts for Hadamard-type fractional integrals,” Journal of Mathematical Analysis and Applications, vol. 270, no. 1, pp. 1-15, 2002. · Zbl 1022.26011 · doi:10.1016/S0022-247X(02)00066-5
[18] A. A. Kilbas, “Hadamard-type fractional calculus,” Journal of the Korean Mathematical Society, vol. 38, no. 6, pp. 1191-1204, 2001. · Zbl 1018.26003
[19] A. A. Kilbas and J. J. Trujillo, “Hadamard-type integrals as G-transforms,” Integral Transforms and Special Functions, vol. 14, no. 5, pp. 413-427, 2003. · Zbl 1043.26004 · doi:10.1080/1065246031000074443
[20] W. T. Coffey, Y. P. Kalmykov, and J. T. Waldron, The Langevin Equation, World Scientific, Singapore, 2nd edition, 2004. · Zbl 1098.82001
[21] S. C. Lim, M. Li, and L. P. Teo, “Langevin equation with two fractional orders,” Physics Letters A, vol. 372, no. 42, pp. 6309-6320, 2008. · Zbl 1225.82049 · doi:10.1016/j.physleta.2008.08.045
[22] S. C. Lim and L. P. Teo, “The fractional oscillator process with two indices,” Journal of Physics A: Mathematical and Theoretical, vol. 42, no. 6, Article ID 065208, 34 pages, 2009. · Zbl 1156.82010 · doi:10.1088/1751-8113/42/6/065208
[23] M. Uranagase and T. Munakata, “Generalized Langevin equation revisited: mechanical random force and self-consistent structure,” Journal of Physics. A. Mathematical and Theoretical, vol. 43, no. 45, Article ID 455003, 11 pages, 2010. · Zbl 1214.82082 · doi:10.1088/1751-8113/43/45/455003
[24] S. I. Denisov, H. Kantz, and P. Hänggi, “Langevin equation with super-heavy-tailed noise,” Journal of Physics A, vol. 43, no. 28, Article ID 285004, 2010. · Zbl 1198.82046 · doi:10.1088/1751-8113/43/28/285004
[25] A. Lozinski, R. G. Owens, and T. N. Phillips, “The langevin and fokker-planck equations in polymer rheology,” Handbook of Numerical Analysis, vol. 16, pp. 211-303, 2011. · Zbl 1318.76016 · doi:10.1016/B978-0-444-53047-9.00002-2
[26] L. Lizana, T. Ambjörnsson, A. Taloni, E. Barkai, and M. A. Lomholt, “Foundation of fractional Langevin equation: harmonization of a many-body problem,” Physical Review E, vol. 81, Article ID 051118, 2010.
[27] Y. Y. Gambo, F. Jarad, D. Baleanu, and T. Abdeljawad, “On Caputo modification of the Hadamard fractional derivatives,” Advances in Difference Equations, vol. 2014, article 10, 2014. · Zbl 1343.26002 · doi:10.1186/1687-1847-2014-10
[28] B. Ahmad and P. Eloe, “A nonlocal boundary value problem for a nonlinear fractional differential equation with two indices,” Communications on Applied Nonlinear Analysis, vol. 17, no. 3, pp. 69-80, 2010. · Zbl 1275.34005
[29] B. Ahmad, J. J. Nieto, A. Alsaedi, and M. El-Shahed, “A study of nonlinear Langevin equation involving two fractional orders in different intervals,” Nonlinear Analysis: Real World Applications, vol. 13, no. 2, pp. 599-606, 2012. · Zbl 1238.34008 · doi:10.1016/j.nonrwa.2011.07.052
[30] J. R. Cannon, “The solution of the heat equation subject to the specification of energy,” Quarterly of Applied Mathematics, vol. 21, pp. 155-160, 1963. · Zbl 0173.38404
[31] A. Bouziani, “On the solvability of nonlocal pluriparabolic problems,” Electronic Journal of Differential Equations, vol. 21, pp. 1-16, 2001. · Zbl 0968.35067
[32] S. Mesloub and S. A. Messaoudi, “A nonlocal mixed semilinear problem for second-order hyperbolic equations,” Electronic Journal of Differential Equations, vol. 30, pp. 1-17, 2003. · Zbl 1012.35007
[33] L. S. Pul’kina, “A nonlocal problem with integral conditions for a hyperbolic equation,” Differential Equations, vol. 40, no. 7, pp. 947-953, 2004. · Zbl 1077.35076 · doi:10.1023/B:DIEQ.0000047025.64101.16
[34] G. Avalishvili, M. Avalishvili, and D. Gordeziani, “On integral nonlocal boundary value problems for some partial differential equations,” Bulletin of the Georgian National Academy of Sciences, vol. 5, no. 1, pp. 31-37, 2011. · Zbl 1227.35015
[35] F. Jarad, T. Abdeljawad, and D. Baleanu, “Caputo-type modification of the Hadamard fractional derivatives,” Advances in Difference Equations, vol. 2012, article 142, 2012. · Zbl 1346.26002 · doi:10.1186/1687-1847-2012-142
[36] M. A. Krasnosel’skii, “Two remarks on the method of successive approximations,” Uspekhi Matematicheskikh Nauk, vol. 10, no. 1, pp. 123-127, 1955.
[37] A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, NY, USA, 2003. · Zbl 1025.47002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.