×

The effect of aggregation on extremes from asymptotically independent light-tailed risks. (English) Zbl 1310.91136

Summary: Portfolio risk diversification is a well established concept in finance. While aggregation of several risky assets generally reduces the overall investment risk due to diversification, the effectiveness of diversification depends on the stochastic behaviour of the returns of the assets comprising the portfolio. The paper proposes a new approach to quantifying the effect of portfolio tail diversification by looking at the asymptotic behaviour of the ratio of the largest loss on the portfolio to the sum of the largest losses on the individual investments held on the stand-alone basis. It is assumed that independent and identically distributed random vectors from the underlying distribution, describing the behaviour of returns on the assets in the portfolio, can be scaled to converge onto a deterministic limit set. This property is satisfied by a number of distributions commonly used in finance. Several analytical examples are given to illustrate the proposed asymptotic diversification index as a measure of the effect of risk aggregation on extremes as well as to quantify the impact of dimension on the diversification and as a tool in optimal portfolio selection.

MSC:

91G10 Portfolio theory
62P05 Applications of statistics to actuarial sciences and financial mathematics
62G32 Statistics of extreme values; tail inference

Software:

QRM
Full Text: DOI

References:

[1] Abdous, B., Fougeres, A. L., Ghoudi, K., Soulier, P.: Estimation of bivariate excess probabilities for elliptical models. Bernoulli 14, 1065-1088 (2008) · Zbl 1155.62042 · doi:10.3150/08-BEJ140
[2] Alink, S., Lowe, M., Wuthrich, M.: Diversification of aggregate dependent risks. Insur. Math. Econ. 35, 77-95 (2004) · Zbl 1052.62105 · doi:10.1016/j.insmatheco.2004.05.001
[3] Artzner, P., Delbaen, F., Eber, J. M., Heath, D.: Coherent measures of riskIn risk management: value at risk and beyond, pp 145-175. Cambridge University Press, Cambridge (2002) · Zbl 1052.62105
[4] Azzalini, A., Dalla Valle, A.: The multivariate skew-normal distribution, Vol. 83 (1996) · Zbl 0885.62062
[5] Balkema, A. A., Nolde, N.: Asymptotic independence for unimodal densities. Adv. Appl. Prob. 42, 411-432 (2010) · Zbl 1239.60007 · doi:10.1239/aap/1275055236
[6] Coles, S. G., Heffernan, J. E., Tawn, J. A.: Dependence measures for extreme value analyses. Extremes 2, 339-365 (1999) · Zbl 0972.62030 · doi:10.1023/A:1009963131610
[7] Davis, R. A., Mulrow, E., Resnick, S. I.: Almost sure limit sets of random samples in Rd. Adv. Appl. Prob 20, 573-599 (1988) · Zbl 0656.60026 · doi:10.2307/1427036
[8] Fang, K. T., Kotz, S., Ng, K. W.: Symmetric multivariate and related distributionsChapman and Hall (1990) · Zbl 1329.62236
[9] Fernandez, C., Osiewalski, J., Steel, M.F.J.: Modeling and inference with v-spherical distributions. J. Amer. Stat. Assoc. 90, 1331-1340 (1995) · Zbl 0868.62045
[10] Ferreira, J. T. A. S., Steel, M. F. J.: Modeling directional dispersion through hyperspherical log-splines. J. Roy. Stat. Soc. B 67, 599-616 (2005) · Zbl 1095.62066 · doi:10.1111/j.1467-9868.2005.00518.x
[11] Genton, M. G.: Skew-Elliptical Distributions and Their ApplicationsChapman & Hall/CRC (2004) · Zbl 0746.60030
[12] Geoffroy, J.: Localisation asymptotique du polyedre d’appui d’un echantillon laplaciena k dimensions. Publ. Inst. Statist. Univ. Paris X, 212-228 (1961) · Zbl 0095.33703
[13] Gupta, A. K., Song, D.: Lp-norm spherical distribution. J. Stat. Plann. Infer. 60, 241-260 (1997) · Zbl 0900.62270 · doi:10.1016/S0378-3758(96)00129-2
[14] Hashorva, E.: On the residual dependence index of elliptical distributions. Stat. Probab. Let. 80, 1070-1078 (2010) · Zbl 1190.62107 · doi:10.1016/j.spl.2010.03.001
[15] Hua, L., Joe, H.: Tail order and intermediate tail dependence of multivariate copulas. J. Multivar. Anal. 102, 1454-1471 (2011) · Zbl 1221.62079 · doi:10.1016/j.jmva.2011.05.011
[16] Kinoshita, K., Resnick, S. I.: Convergence of scaled random samples in Rd. Ann. Probab. 19, 1640—1663 (1991) · Zbl 0746.60030 · doi:10.1214/aop/1176990227
[17] Ledford, A., Tawn, J.: Statistics for near independence in multivariate extreme values. Biometrika 83, 169-187 (1996) · Zbl 0865.62040 · doi:10.1093/biomet/83.1.169
[18] Ledford, A., Tawn, J.A.: Modelling dependence within joint tail regions. J. Roy. Stat. Soc. B 59, 475-499 (1997) · Zbl 0886.62063 · doi:10.1111/1467-9868.00080
[19] Levy, H., Duchin, R.: Asset return distributions and the investment horizon. J. Portf. Manag. 30, 47-62 (2004) · doi:10.3905/jpm.2004.412319
[20] Mainik, G., Embrechts, P.: Diversification in heavy-tailed portfolios: properties and pitfalls. Ann. Actuar. Sci. 7, 26-45 (2013) · doi:10.1017/S1748499512000280
[21] Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975) · Zbl 0321.60009
[22] McNeil, A. J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts, Techniques, Tools. Princeton University Press, Princeton (2005) · Zbl 1089.91037
[23] Nolde, N.: Geometric interpretation of the residual dependence coefficient. J. Multivar. Anal. 123, 85-95 (2014) · Zbl 1360.60100 · doi:10.1016/j.jmva.2013.08.018
[24] Poon, S. H., Rockinger, M., Tawn, J.: Extreme value dependence in financial markets: diagnostics, Models, and financial implications. Rev. Financ. Stud. 17, 581-610 (2004) · doi:10.1093/rfs/hhg058
[25] Resnick, S. I.: Extreme values, regular variation, and point processes. Springer (1987) · Zbl 0633.60001
[26] Schlueter, S., Fischer, M.: The weak tail dependence coefficient of the elliptical generalized hyperbolic distribution. Extremes 15, 159-174 (2012) · Zbl 1329.62236 · doi:10.1007/s10687-011-0132-z
[27] Sibuya, M.: Bivariate extreme statistics. Ann. Inst. Stat. Math. 11, 195-210 (1960) · Zbl 0095.33703 · doi:10.1007/BF01682329
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.