×

Improved dynamics and gravitational collapse of tachyon field coupled with a barotropic fluid. (English) Zbl 1310.83010

Summary: We consider a spherically symmetric gravitational collapse of a tachyon field with an inverse square potential, which is coupled with a barotropic fluid. By employing an holonomy correction imported from loop quantum cosmology (LQC), we analyze the dynamics of the collapse within a semiclassical description. Using a dynamical system approach, we find that the stable fixed points given by the standard general relativistic setting turn into saddle points in the present context. This provides a new dynamics in contrast to the black hole and naked singularities solutions appearing in the classical model. Our results suggest that classical singularities can be avoided by quantum gravity effects and are replaced by a bounce. By a thorough numerical studies we show that, depending on the barotropic parameter \(\gamma\), there exists a class of solutions corresponding to either a fluid or a tachyon dominated regimes. Furthermore, for the case \(\gamma \sim 1\), we find an interesting tracking behavior between the tachyon and the fluid leading to a dust-like collapse. In addition, we show that, there exists a threshold scale which determines when an outward energy flux emerges, as a nonsingular black hole is forming, at the corresponding collapse final stages.

MSC:

83C15 Exact solutions to problems in general relativity and gravitational theory
83C75 Space-time singularities, cosmic censorship, etc.
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
83C47 Methods of quantum field theory in general relativity and gravitational theory
83C57 Black holes

References:

[1] DOI: 10.1017/CBO9780511536274 · doi:10.1017/CBO9780511536274
[2] Hawking S. W., The Large Scale Structure of Space-Time (1974)
[3] DOI: 10.4310/ATMP.2003.v7.n2.a2 · doi:10.4310/ATMP.2003.v7.n2.a2
[4] DOI: 10.1088/0264-9381/28/21/213001 · Zbl 1230.83003 · doi:10.1088/0264-9381/28/21/213001
[5] DOI: 10.1017/CBO9780511921759 · Zbl 1210.83001 · doi:10.1017/CBO9780511921759
[6] DOI: 10.1103/PhysRevLett.95.091302 · doi:10.1103/PhysRevLett.95.091302
[7] DOI: 10.1103/PhysRevLett.96.031302 · doi:10.1103/PhysRevLett.96.031302
[8] DOI: 10.1103/PhysRevLett.96.141301 · Zbl 1153.83417 · doi:10.1103/PhysRevLett.96.141301
[9] DOI: 10.1142/S0218271814500618 · doi:10.1142/S0218271814500618
[10] DOI: 10.1103/PhysRevD.88.044009 · doi:10.1103/PhysRevD.88.044009
[11] DOI: 10.1007/s10714-013-1503-3 · Zbl 1266.83050 · doi:10.1007/s10714-013-1503-3
[12] DOI: 10.1103/PhysRevD.79.124011 · doi:10.1103/PhysRevD.79.124011
[13] DOI: 10.1103/PhysRevD.87.024042 · doi:10.1103/PhysRevD.87.024042
[14] Herrera R., Gen. Relativ. Gravit. 36 pp 9– (2004)
[15] DOI: 10.1007/s10509-008-9809-4 · doi:10.1007/s10509-008-9809-4
[16] DOI: 10.1016/j.physletb.2009.02.041 · doi:10.1016/j.physletb.2009.02.041
[17] H. K. Khalil, Nonlinear Systems, 2nd edn. (Prentice Hall, Englewood Cliffs, NJ, 1996) pp. 167–177.
[18] DOI: 10.1103/PhysRevD.69.123502 · doi:10.1103/PhysRevD.69.123502
[19] DOI: 10.1103/PhysRevD.59.023509 · doi:10.1103/PhysRevD.59.023509
[20] DOI: 10.1103/PhysRevD.84.104031 · doi:10.1103/PhysRevD.84.104031
[21] DOI: 10.1088/0264-9381/23/6/015 · Zbl 1091.83004 · doi:10.1088/0264-9381/23/6/015
[22] DOI: 10.1088/0264-9381/24/14/007 · Zbl 1206.83071 · doi:10.1088/0264-9381/24/14/007
[23] DOI: 10.1103/PhysRev.56.455 · Zbl 0022.28104 · doi:10.1103/PhysRev.56.455
[24] DOI: 10.1103/PhysRevD.74.084003 · Zbl 1197.83047 · doi:10.1103/PhysRevD.74.084003
[25] DOI: 10.1103/PhysRevD.75.024035 · Zbl 1197.83048 · doi:10.1103/PhysRevD.75.024035
[26] DOI: 10.1103/PhysRevD.85.044011 · doi:10.1103/PhysRevD.85.044011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.