×

Global dynamics and inflationary center manifold and slow-roll approximants. (English) Zbl 1309.83029

Summary: We consider the familiar problem of a minimally coupled scalar field with quadratic potential in flat Friedmann-Lemaître-Robertson-Walker cosmology to illustrate a number of techniques and tools, which can be applied to a wide range of scalar field potentials and problems in, e.g., modified gravity. We present a global and regular dynamical systems description that yields a global understanding of the solution space, including asymptotic features. We introduce dynamical systems techniques such as center manifold expansions and use Padé approximants to obtain improved approximations for the “attractor solution” at early times. We also show that future asymptotic behavior is associated with a limit cycle, which shows that manifest self-similarity is asymptotically broken toward the future and gives approximate expressions for this behavior. We then combine these results to obtain global approximations for the attractor solution, which, e.g., might be used in the context of global measures. In addition, we elucidate the connection between slow-roll based approximations and the attractor solution, and compare these approximations with the center manifold based approximants.{
©2015 American Institute of Physics}

MSC:

83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C47 Methods of quantum field theory in general relativity and gravitational theory
81T20 Quantum field theory on curved space or space-time backgrounds
83F05 Relativistic cosmology
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
41A21 Padé approximation
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems

References:

[1] ; Ade, P., Detection of B-mode polarization at degree angular scales by BICEP2, Phys. Rev. Lett., 112, 241101 (2014) · doi:10.1103/PhysRevLett.112.241101
[2] Okada, N.; Senoguz, V. N.; Shafi, Q., Simple inflationary models in light of BICEP2: An update (2014)
[3] Ma, Y. Z.; Wang, Y., Reconstructing the local potential of inflation with BICEP2 data, J. Cosmol. Astropart. Phys., 2014, 041 · doi:10.1088/1475-7516/2014/09/041
[4] Belinskîi, V. A.; Grishchuk, L. P.; Zel’dovich, Ya. B.; Khalatnikov, I. M., Inflationary stages in cosmological models with a scalar field, Zh. Eksp. Teor. Fiz., 89, 346-360 (1985)
[5] Belinskiǐ, V. A.; Grishchuk, L. P.; Khalatnikov, I. M.; Zeldovich, Y. B., Inflationary stages in cosmological models with a scalar field, Phys. Lett. B, 155, 232 (1985) · doi:10.1016/0370-2693(85)90644-6
[6] Belinskîi, V. A.; Khalatnikov, I. M., The degree of generality of inationary solutions in cosmological models with a scalar field, Zh. Eksp. Teor. Fiz., 93, 784-799 (1987)
[7] Belinskiǐ, V. A.; Ishihara, H.; Khalatnikov, I. M.; Sato, H., On the degree of generality of inflation in Friedmann cosmological models with a massive scalar field, Prog. Theor. Phys., 79, 676 (1988) · doi:10.1143/PTP.79.676
[8] Rendall, A. D., Cosmological models and centre manifold theory, Gen. Relativ. Gravitation, 34, 1277 (2002) · Zbl 1016.83044 · doi:10.1023/A:1019734703162
[9] Rendall, A. D., Late-time oscillatory behaviour for self-gravitating scalar fields, Classical Quantum Gravity, 24, 667 (2007) · Zbl 1206.83127 · doi:10.1088/0264-9381/24/3/010
[10] Liddle, A. R.; Parsons, P.; Barrow, J. D., Formalizing the slow-roll approximation in inflation, Phys. Rev. D, 50, 7222 (1994) · doi:10.1103/PhysRevD.50.7222
[11] Coley, A. A., Dynamical Systems and Cosmology (2003) · Zbl 1055.83001
[12] Beyer, F.; Escobar, L., Graceful exit from inflation for minimally coupled Bianchi A scalar field models, Classical Quantum Gravity, 30, 195020 (2013) · Zbl 1277.83019 · doi:10.1088/0264-9381/30/19/195020
[13] Fadragas, C. R.; Leon, G.; Saridakis, E. N., Dynamical analysis of anisotropic scalar-field cosmologies for a wide range of potentials, Classical Quantum Gravity, 31, 075018 (2014) · Zbl 1291.83208 · doi:10.1088/0264-9381/31/7/075018
[14] Uggla, C., Recent developments concerning generic spacelike singularities, Gen. Relativ. Gravitation, 45, 1669 (2013) · Zbl 1276.83002 · doi:10.1007/s10714-013-1556-3
[15] Wainwright, J.; Ellis, G. F. R., Dynamical Systems in Cosmology (1997) · Zbl 1072.83002
[16] Crawford, J. D., Introduction to bifurcation theory, Rev. Mod. Phys., 63, 991 (1991) · doi:10.1103/RevModPhys.63.991
[17] Carr, J., Applications of Center Manifold Theory (1981) · Zbl 0464.58001
[18] Remmen, G. N.; Carroll, S. M., Attractor solutions in scalar-field cosmology, Phys. Rev. D, 88, 083518 (2013) · doi:10.1103/PhysRevD.88.083518
[19] Remmen, G. N.; Carroll, S. M., How many e-folds should we expect from high-scale inflation?, Phys. Rev. D, 90, 063517 (2014) · doi:10.1103/PhysRevD.90.063517
[20] Corichi, A.; Sloan, D., Inflationary attractors and their measures, Classical Quantum Gravity, 31, 062001 (2014) · Zbl 1292.83057 · doi:10.1088/0264-9381/31/6/062001
[21] Uggla, C., Global cosmological dynamics for the scalar field representation of the modified Chaplygin gas, Phys. Rev. D, 88, 064040 (2013) · doi:10.1103/PhysRevD.88.064040
[22] Turner, M. S., Coherent scalar-field oscillations in an expanding universe, Phys. Rev. D, 28, 1243 (1983) · doi:10.1103/PhysRevD.28.1243
[23] Damour, T.; Mukhanov, V. F., Inflation without slow roll, Phys. Rev. Lett., 80, 3440 (1998) · Zbl 0949.83079 · doi:10.1103/PhysRevLett.80.3440
[24] de la Macorra, A.; Piccinelli, G., General scalar fields as quintessence, Phys. Rev. D, 61, 123503 (2000) · doi:10.1103/PhysRevD.61.123503
[25] Wainwright, J.; Hancock, M. J.; Uggla, C., Asymptotic self-similarity breaking at late times in cosmology, Classical Quantum Gravity, 16, 2577 (1999) · Zbl 0946.83067 · doi:10.1088/0264-9381/16/8/302
[26] Foster, S., Scalar field cosmologies and the initial space-time singularity, Classical Quantum Gravity, 15, 3485 (1998) · Zbl 0946.83072 · doi:10.1088/0264-9381/15/11/014
[27] Sinou, J. J.; Thouverez, F.; Jezequel, L., Extension of the center manifold approach, using rational fractional approximants, applied to non-linear stability analysis, Nonlinear Dyn., 33, 267 (2003) · Zbl 1046.70011 · doi:10.1023/A:1026060404109
[28] Böhmer, C. G.; Chan, N.; Lazkoz, R., Dynamics of dark energy models and centre manifolds, Phys. Lett. B, 714, 11 (2012) · doi:10.1016/j.physletb.2012.06.064
[29] Baker, G. A., Essentials of Padé Approximants (1975) · Zbl 0315.41014
[30] Kallrath, J., On Rational Function Techniques and Padé Approximants. An Overview, 2002.
[31] Gruber, C.; Luongo, O., Cosmographic analysis of the equation of state of the universe through Padé approximations, Phys. Rev. D, 89, 103506 (2014) · doi:10.1103/PhysRevD.89.103506
[32] Wei, H.; Yan, X. P.; Zhou, Y. N., Cosmological applications of Padé approximant, J. Cosmol. Astropart. Phys., 2014, 045 · doi:10.1088/1475-7516/2014/01/045
[33] Uggla, C., Asymptotic cosmological solutions: Orthogonal Bianchi type II models, Classical Quantum Gravity, 6, 383 (1989) · doi:10.1088/0264-9381/6/3/015
[34] Lim, W. C.; van Elst, H.; Uggla, C.; Wainwright, J., Asymptotic isotropization in inhomogeneous cosmology, Phys. Rev. D, 69, 103507 (2004) · Zbl 1405.83081 · doi:10.1103/physrevd.69.103507
[35] Vennin, V., Horizon-flow off-track for inflation, Phys. Rev. D, 89, 083526 (2014) · doi:10.1103/PhysRevD.89.083526
[36] Salopek, D. S.; Bond, J. R., Nonlinear evolution of long-wavelength metric fluctuations in inflationary models, Phys. Rev. D, 42, 3936 (1990) · doi:10.1103/physrevd.42.3936
[37] Perez, J.; Füzfa, A.; Carletti, T.; Mélot, L.; Guedezounme, L., The jungle universe: Coupled cosmological models in a Lotka-Volterra framework, Gen. Relativ. Gravitation, 46, 1753 (2014) · Zbl 1298.83136 · doi:10.1007/s10714-014-1753-8
[38] Cattoen, C.; Visser, M., Cosmographic Hubble fits to the supernova data, Phys. Rev. D, 78, 063501 (2008) · doi:10.1103/PhysRevD.78.063501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.