×

\(\mathcal{N}\)-fold supersymmetry and quasi-solvability associated with \(X_2\)-Laguerre polynomials. (English) Zbl 1309.81102

Summary: We construct a new family of quasi-solvable and \(\mathcal{N}\)-fold supersymmetric quantum systems where each Hamiltonian preserves an exceptional polynomial subspace of codimension 2. We show that the family includes as a particular case the recently reported rational radial oscillator potential whose eigenfunctions are expressed in terms of the \(X_2\)-Laguerre polynomials of the second kind. In addition, we find that the two kinds of the \(X_2\)-Laguerre polynomials are ingeniously connected with each other by the \(\mathcal{N}\)-fold supercharge.{
©2010 American Institute of Physics}

MSC:

81Q60 Supersymmetry and quantum mechanics
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)

References:

[1] 1.D.Gómez-Ullate, N.Kamran, and R.Milson, Inverse Probl.INPEEY0266-561123, 1915 (2007)10.1088/0266-5611/23/5/008; e-print arXiv:nlin.SI/0610065. · Zbl 1129.34056
[2] Gómez-Ullate, D.; Kamran, N.; Milson, R., J. Approx. Theory
[3] 3.D.Gómez-Ullate, N.Kamran, and R.Milson, J. Math. Anal. Appl.JMANAK0022-247X359, 352 (2009)10.1016/j.jmaa.2009.05.052; e-print arXiv:0807.3939 [math-ph]. · Zbl 1183.34033
[4] 4.C.Quesne, J. Phys. A: Math. Theor.1751-811341, 392001 (2008)10.1088/1751-8113/41/39/392001; e-print arXiv:0807.4087 [quant-ph]. · Zbl 1192.81174
[5] 5.C.Quesne, SIGMA5, 084 (2009); e-print arXiv:0906.2331 [math-ph].
[6] 6.S.Odake and R.Sasaki, Phys. Lett. BPYLBAJ0370-2693679, 414 (2009)10.1016/j.physletb.2009.08.004; e-print arXiv:0906.0142 [math-ph].
[7] Witten, E., Nucl. Phys. B, 188, 513 (1981) · Zbl 1258.81046 · doi:10.1016/0550-3213(81)90006-7
[8] 8.F.Cooper, A.Khare, and U.Sukhatme, Phys. Rep.PRPLCM0370-1573251, 267 (1995)10.1016/0370-1573(94)00080-M; e-print arXiv:hep-th/9405029.
[9] Junker, G., Supersymmetric Methods in Quantum and Statistical Physics (1996) · Zbl 0867.00011
[10] Bagchi, B. K., Supersymmetry in Quantum and Classical Mechanics (2000)
[11] Gendenshtein, L. E., JETP Lett., 38, 356 (1983)
[12] Turbiner, A. V.; Ushveridze, A. G., Phys. Lett. A, 126, 181 (1987) · doi:10.1016/0375-9601(87)90456-7
[13] Ushveridze, A. G., Quasi-Exactly Solvable Models in Quantum Mechanics (1994) · Zbl 0834.58042
[14] 14.A. A.Andrianov, M. V.Ioffe, and V. P.Spiridonov, Phys. Lett. APYLAAG0375-9601174, 273 (1993)10.1016/0375-9601(93)90137-O; e-print arXiv:hep-th/9303005.
[15] 15.H.Aoyama, M.Sato, and T.Tanaka, Nucl. Phys. BNUPBBO0550-3213619, 105 (2001)10.1016/S0550-3213(01)00516-8; e-print arXiv:quant-ph/0106037. · Zbl 0992.81029
[16] 16.A. A.Andrianov and A. V.Sokolov, Nucl. Phys. BNUPBBO0550-3213660, 25 (2003)10.1016/S0550-3213(03)00232-3; e-print arXiv:hep-th/0301062. · Zbl 1035.81025
[17] 17.A.González-López and T.Tanaka, J. Phys. AJPHAC50305-447038, 5133 (2005)10.1088/0305-4470/38/23/005; e-print arXiv:hep-th/0405079. · Zbl 1071.81046
[18] Tanaka, T.; Levy, M. B., Mathematical Physics Research Developments (2009)
[19] 19.T.Tanaka, J. Phys. AJPHAC50305-447039, 219 (2006)10.1088/0305-4470/39/1/016; e-print arXiv:quant-ph/0509132. · Zbl 1092.81031
[20] It should be noted that shape invariance is not a sufficient condition for exact solvability; shape invariance, as well as solvability, is a local concept while exact solvability is a global one. For the importance of recognizing the difference between local and global concepts, see, e.g., Ref. 21.
[21] 21.A.González-López and T.Tanaka, J. Phys. AJPHAC50305-447039, 3715 (2006)10.1088/0305-4470/39/14/014; e-print arXiv:quant-ph/0602177. · Zbl 1090.81029
[22] 22.G.Post and A.Turbiner, Russ. J. Math. Phys.RJMPEL1061-92083, 113 (1995); e-print arXiv:funct-an/9307001v1.
[23] 23.A.González-López and T.Tanaka, Phys. Lett. BPYLBAJ0370-2693586, 117 (2004)10.1016/j.physletb.2003.10.119; e-print arXiv:hep-th/0307094. · Zbl 1246.81366
[24] González-López, A.; Kamran, N.; Olver, P. J., Commun. Math. Phys., 153, 117 (1993) · Zbl 0767.35052 · doi:10.1007/BF02099042
[25] 25.T.Tanaka, Nucl. Phys. BNUPBBO0550-3213662, 413 (2003)10.1016/S0550-3213(03)00341-9; e-print arXiv:hep-th/0212276. · Zbl 1034.81021
[26] This significant characterization of solvability first appeared in Ref. 27 but unfortunately without sufficient appreciation of the difference between solvability and exact solvability.
[27] Turbiner, A. V., Contemp. Math., 160, 263 (1994)
[28] 28.C. M.Bender and G. V.Dunne, J. Math. Phys.JMAPAQ0022-248837, 6 (1996)10.1063/1.531373; e-print arXiv:hep-th/9511138. · Zbl 0897.33014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.