×

Network exploration by silent and oblivious robots. (English) Zbl 1309.68148

Thilikos, Dimitrios M. (ed.), Graph theoretic concepts in computer science. 36th international workshop, WG 2010, Zarós, Crete, Greece, June 28–30, 2010. Revised papers. Berlin: Springer (ISBN 978-3-642-16925-0/pbk). Lecture Notes in Computer Science 6410, 208-219 (2010).
Summary: In this paper we investigate the basic problem of Exploration of a graph by a group of identical mobile computational entities, called robots, operating autonomously and asynchronously. In particular we are concerned with what graphs can be explored, and how, if the robots do not remember the past and have no explicit means of communication. This model of robots is used when the spatial universe in which the robots operate is continuous (e.g., a curve, a polygonal region, a plane, etc.). The case when the spatial universe is discrete (i.e., a graph) has been also studied but only for the classes of acyclic graphs and of simple cycles. In this paper we consider networks of arbitrary topology modeled as connected graphs with local orientation (locally distinct edge labels). We concentrate on class \({\mathcal H}_k\) of asymmetric configurations with \(k\) robots. Our results indicate that the explorability of graphs in this class depends on the number \(k\) of robots participating in the exploration. In particular, exploration is impossible for \(k<3\) robots. When there are only \(k=3\) robots, only a subset of \({\mathcal H}_3\) can be explored; we provide a complete characterization of the networks that can be explored. When there are \(k=4\) robots, we prove that all networks in \({\mathcal H}_4\) can be explored. Finally, we prove that for any odd \(k>4\) all networks in \({\mathcal H}_k\) can be explored by presenting a general algorithm. The determination of which networks can be explored when \(k>4\) is even, is still open but can be reduced to the existence of a gathering algorithm for \({\mathcal H}_k\).
For the entire collection see [Zbl 1200.68024].

MSC:

68R10 Graph theory (including graph drawing) in computer science
05C82 Small world graphs, complex networks (graph-theoretic aspects)
68T40 Artificial intelligence for robotics
Full Text: DOI

References:

[1] Asahiro, Y., Fujita, S., Suzuki, I., Yamashita, M.: A self-stabilizing marching algorithm for a group of oblivious robots. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 125–144. Springer, Heidelberg (2008) · doi:10.1007/978-3-540-92221-6_10
[2] Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Gathering and rendezvous by oblivious robots in arbitrary graphs, rings, and trees, Technical Report, University of Ottawa (2009)
[3] Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003) · Zbl 1039.68129 · doi:10.1007/3-540-45061-0_90
[4] Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Computing 34, 1516–1528 (2005) · Zbl 1081.68110 · doi:10.1137/S0097539704446475
[5] Défago, X., Souissi, S.: Non-uniform circle formation algorithm for oblivious mobile robots with convergence toward uniformity. Theoretical Computer Science 396(1-3), 97–112 (2008) · Zbl 1146.68462 · doi:10.1016/j.tcs.2008.01.050
[6] Devismes, S., Petit, F., Tixeuil, S.: Optimal probabilistic ring exploration by semi-synchronous oblivious robots. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 203–217. Springer, Heidelberg (2010) · Zbl 1274.68566 · doi:10.1007/978-3-642-11476-2_16
[7] Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communicating: ring exploration by asynchronous oblivious robots. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 105–118. Springer, Heidelberg (2007) · doi:10.1007/978-3-540-77096-1_8
[8] Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without memory: Tree exploration by asynchronous oblivious robots. Theoretical Computer Science (2010) (to appear) · Zbl 1191.68712 · doi:10.1016/j.tcs.2010.01.007
[9] Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asynchronous anonymous oblivious robots. Theoretical Computer Science 407(1-3), 412–447 (2008) · Zbl 1152.68053 · doi:10.1016/j.tcs.2008.07.026
[10] Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: gathering of asynchronous oblivious robots on a ring. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 446–462. Springer, Heidelberg (2008) · doi:10.1007/978-3-540-92221-6_28
[11] Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theoretical Computer Science 390(1), 27–39 (2008) · Zbl 1134.68013 · doi:10.1016/j.tcs.2007.09.032
[12] Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28, 1347–1363 (1999) · Zbl 0940.68145 · doi:10.1137/S009753979628292X
[13] Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious anonymous mobile robots. Theoretical Computer Science (2010) (to appear) · Zbl 1208.68222 · doi:10.1016/j.tcs.2010.01.037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.