×

High-dimensional autocovariance matrices and optimal linear prediction. (English) Zbl 1309.62154

Summary: A new methodology for optimal linear prediction of a stationary time series is introduced. Given a sample \(X_{1},\dots,X_{n}\), the optimal linear predictor of \(X_{n+1}\) is \(\tilde{X}_{n+1}=\phi_{1}(n)X_{n}+\phi_{2}(n)X_{n-1}+\cdots+\phi_{n}(n)X_{1}\). In practice, the coefficient vector \(\phi(n)\equiv(\phi_{1}(n),\phi_{2}(n),\dots,\phi_{n}(n))'\) is routinely truncated to its first \(p\) components in order to be consistently estimated. By contrast, we employ a consistent estimator of the \(n\times n\) autocovariance matrix \(\Gamma_{n}\) in order to construct a consistent estimator of the optimal, full-length coefficient vector \(\phi(n)\). Asymptotic convergence of the proposed predictor to the oracle is established, and finite sample simulations are provided to support the applicability of the new method. As a by-product, new insights are gained on the subject of estimating \(\Gamma_{n}\) via a positive definite matrix, and four ways to impose positivity are introduced and compared. The closely related problem of spectral density estimation is also addressed.

MSC:

62M20 Inference from stochastic processes and prediction
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62M15 Inference from stochastic processes and spectral analysis

Software:

Mcomp

References:

[1] Basu, S. and Michailidis, G. (2014). Regularized estimation in sparse high-dimensional time series models., · Zbl 1317.62067 · doi:10.1214/15-AOS1315
[2] Baxter, G. (1962). An asymptotic result for the finite predictor., Mathematica Scandinavica 10 137-144. · Zbl 0112.09401 · doi:10.7146/math.scand.a-10520
[3] Baxter, G. (1963). A norm inequality for a “finite-section” Wiener-Hopf equation., Illinois Journal of Mathematics 7 97-103. · Zbl 0113.09101
[4] Bickel, P. J. and Gel, Y. R. (2011). Banded regularization of autocovariance matrices in application to parameter estimation and forecasting of time series., Journal of the Royal Statistical Society: Series B 73 711-728. · Zbl 1228.62106 · doi:10.1111/j.1467-9868.2011.00779.x
[5] Bickel, P. and Levina, E. (2008a). Covariance regularization by thresholding., The Annals of Statistics 36 2577-2604. · Zbl 1196.62062 · doi:10.1214/08-AOS600
[6] Bickel, P. and Levina, E. (2008b). Regularized estimation of large covariance matrices., The Annals of Statistics 36 199-227. · Zbl 1132.62040 · doi:10.1214/009053607000000758
[7] Brent, R. P., Gustavson, F. G. and Yun, D. Y. (1980). Fast solution of Toeplitz systems of equations and computation of Padé approximants., Journal of Algorithms 1 259-295. · Zbl 0475.65018 · doi:10.1016/0196-6774(80)90013-9
[8] Brockwell, P. J. and Davis, R. A. (1991)., Time Series: Theory and Methods . Springer, New York. · Zbl 0709.62080
[9] Cai, T. T. and Liu, W. (2011). Adaptive thresholding for sparse covariance matrix estimation., Journal of the American Statistical Association 106 672-684. · Zbl 1232.62086 · doi:10.1198/jasa.2011.tm10560
[10] Cai, T. T., Ren, Z. and Zhou, H. H. (2013). Optimal rates of convergence for estimating Toeplitz covariance matrices., Probability Theory and Related Fields 156 101-143. · Zbl 06176807 · doi:10.1007/s00440-012-0422-7
[11] Cai, T. T. and Zhou, H. H. (2012a). Minimax estimation of large covariance matrices under l1 norm., Statistica Sinica 22 1319-1378. · Zbl 1266.62036
[12] Cai, T. T. and Zhou, H. H. (2012b). Optimal rates of convergence for sparse covariance matrix estimation., The Annals of Statistics 40 2389-2420. · Zbl 1373.62247 · doi:10.1214/12-AOS998
[13] Chen, X., Xu, M. and Wu, W. B. (2013). Covariance and precision matrix estimation for high-dimensional time series., The Annals of Statistics 41 2994-3021. · Zbl 1294.62123 · doi:10.1214/13-AOS1182
[14] Demko, S., Moss, W. F. and Smith, P. W. (1984). Decay rates for inverses of band matrices., Mathematics of Computation 43 491-499. · Zbl 0568.15003 · doi:10.2307/2008290
[15] Gray, R. M. (2006)., Toeplitz and Circulant Matrices: A Review . Now publishers Inc., Boston, MA. · Zbl 1115.15021
[16] Grenander, U. and Szegő, G. (1958)., Toeplitz Forms and Their Applications . University of California Press, Berkeley. · Zbl 0080.09501
[17] Hyndman, R., Akram, M. and Bergmeir, C. (2013). Mcomp: Data from the M-competitions. R package version, 2.05.
[18] Kreiss, J. P., Paparoditis, E. and Politis, D. N. (2011). On the range of validity of the autoregressive sieve bootstrap., The Annals of Statistics 39 2103-2130. · Zbl 1108.62069 · doi:10.1093/biomet/93.3.491
[19] Kwiatkowski, D., Phillips, P., Schmidt, P. and Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?, Journal of Econometrics 54 159-178. · Zbl 0871.62100 · doi:10.1016/0304-4076(92)90104-Y
[20] Ledoit, O. and Wolf, M. (2003). Improved estimation of the covariance matrix of stock returns with an application to portfolio selection., Journal of Empirical Finance 10 603-621.
[21] Ledoit, O. and Wolf, M. (2004). Honey, I shrunk the sample covariance matrix., The Journal of Portfolio Management 30 110-119.
[22] McMurry, T. L. and Politis, D. N. (2004). Nonparametric regression with infinite order flat-top kernels., Journal of Nonparametric Statistics 16 549-562. · Zbl 1072.62029 · doi:10.1080/10485250310001622596
[23] McMurry, T. L. and Politis, D. N. (2010). Banded and tapered estimates for autocovariance matrices and the linear process bootstrap., Journal of Time Series Analysis 31 471-482. Corrigendum, J. Time Ser. Anal. 33 2012. · Zbl 1226.60052 · doi:10.1111/j.1467-9892.2010.00679.x
[24] Paparoditis, E. and Politis, D. N. (2012). Nonlinear spectral density estimation: Thresholding the correlogram., Journal of Time Series Analysis 33 386-397. · Zbl 1301.62041 · doi:10.1111/j.1467-9892.2011.00771.x
[25] Politis, D. N. (2001). On nonparametric function estimation with infinite-order flat-top kernels. In, Probability and Statistical Models with Applications (C. A. Charalambides, M. V. Koutras and N. Balakrishnan, eds.) 469-483. Chapman & Hall/CRC, Boca Raton.
[26] Politis, D. N. (2003). Adaptive bandwidth choice., Journal of Nonparametric Statistics 15 517-533. · Zbl 1054.62038 · doi:10.1080/10485250310001604659
[27] Politis, D. N. (2011). Higher-order accurate, positive semidefinite estimation of large-sample covariance and spectral density matrices., Econometric Theory 27 703-744. · Zbl 1219.62144 · doi:10.1017/S0266466610000484
[28] Politis, D. N. and Romano, J. P. (1995). Bias-corrected nonparametric spectral estimation., Journal of Time Series Analysis 16 67-103. · Zbl 1227.62067 · doi:10.1214/11-AOS900
[29] Wu, W. B. (2005). Nonlinear system theory: Another look at dependence., Proceedings of the National Academy of Sciences 102 14150-14154. · Zbl 1135.62075 · doi:10.1073/pnas.0506715102
[30] Wu, W. B. and Pourahmadi, M. (2009). Banding sample autocovariance matrices of stationary processes., Statistica Sinica 19 1755-1768. · Zbl 1176.62083
[31] Xiao, H. and Wu, W. B. (2012). Covariance matrix estimation for stationary time series., The Annals of Statistics 40 466-493. · Zbl 1246.62191 · doi:10.1214/11-AOS967
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.