×

Wavelet transform on the torus: a group theoretical approach. (English) Zbl 1309.42046

A continuous wavelet transform (CWT) on the torus is constructed. A CWT on the sphere is considered before. A CWT on the torus is based on the theory of coherent states of quantum physics (formulated in terms of group representation theory). The Euclidean limit reproduces wavelets on the plane with two dilations, which can be defined through the natural tensor product representation of usual wavelets. Restricting ourselves to a single dilation imposes severe conditions on the mother wavelet that can be overcome by adding extra modular group \(\mathrm{SL}(2,\mathbb Z)\) transformations, thus leading to the concept of modular wavelets.

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
44A20 Integral transforms of special functions

References:

[1] Grossmann, A.; Morlet, J.; Paul, T., Transforms associated to square integrable group representations I. General results, J. Math. Phys., 26, 2473-2479 (1985) · Zbl 0571.22021
[2] Ali, S. T.; Antoine, J.-P.; Gazeau, J.-P., Coherent States, Wavelets and Their Generalizations (2000), Springer · Zbl 1064.81069
[3] Führ, H., Abstract Harmonic Analysis of Continuous Wavelet Transforms, Springer Lecture Notes in Mathematics, vol. 1863 (2005), Springer-Verlag: Springer-Verlag Heidelberg · Zbl 1060.43002
[4] Antoine, J.-P.; Roşca, D.; Vandergheynst, P., Wavelet transform on manifolds: Old and new approaches, Appl. Comput. Harmon. Anal., 28, 189-202 (2010) · Zbl 1203.42047
[5] Führ, H., Painless Gabor expansions on homogeneous manifolds, Appl. Comput. Harmon. Anal., 26, 200-211 (2009) · Zbl 1209.42026
[6] Holschneider, M., Continuous wavelet transforms on the sphere, J. Math. Phys., 37, 4156-4165 (1996) · Zbl 0859.42022
[7] Antoine, J.-P.; Vandergheynst, P., Wavelets on the 2-sphere: a group-theoretical approach, Appl. Comput. Harmon. Anal., 7, 262-291 (1999) · Zbl 0945.42023
[8] Antoine, J.-P.; Vandergheynst, P., Wavelets on the \(n\)-sphere and related manifolds, J. Math. Phys., 39, 3987-4008 (1998) · Zbl 0929.42029
[9] Antoine, J.-P.; Demanet, L.; Jacques, L.; Vandergheynst, P., Wavelets on the sphere: implementation and approximations, Appl. Comput. Harmon. Anal., 13, 177-200 (2002) · Zbl 1021.42022
[10] Bogdanova, I.; Vandergheynst, P.; Antoine, J.-P.; Jacques, L.; Morvidone, M., Stereographic wavelet frames on the sphere, Appl. Comput. Harmon. Anal., 19, 223-252 (2005) · Zbl 1082.42026
[11] Bogdanova, I.; Vandergheynst, P.; Gazeau, J.-P., Continuous wavelet transform on the hyperboloid, Appl. Comput. Harmon. Anal., 23, 285-306 (2007) · Zbl 1138.42016
[12] Calixto, M.; Pérez-Romero, E., Extended MacMahon-Schwinger’s master theorem and conformal wavelets in complex Minkowski space, Appl. Comput. Harmon. Anal., 21, 204-229 (2006) · Zbl 1140.42014
[13] Prange, R. E.; Girvin, S. M., The Quantum Hall Effect (1990), Springer: Springer London
[14] Aldaya, V.; Calixto, M.; Guerrero, J., Algebraic quantization, good operators and fractional quantum numbers, Comm. Math. Phys., 178, 399-424 (1996) · Zbl 0859.46048
[15] Guerrero, J.; Calixto, M.; Aldaya, V., Modular invariance on the torus and Abelian Chern-Simons theory, J. Math. Phys., 40, 3773-3790 (1999) · Zbl 0969.81033
[16] Calixto, M.; Guerrero, J., Wavelet transform on the circle and the real line: A unified group-theoretical treatment, Appl. Comput. Harmon. Anal., 21, 204-229 (2006) · Zbl 1140.42014
[17] Ashino, R.; Desjardins, S. J.; Heil, C.; Nagase, M.; Vaillancourt, R., Smooth tight frame wavelets and image microanalyis in the Fourier domain, Comput. Math. Appl., 45, 1551-1579 (2003) · Zbl 1044.42027
[18] Ruzhansky, M.; Turunen, V., Quantization of pseudo-differential operators on the torus, J. Fourier Anal. Appl., 16, 943-982 (2010) · Zbl 1252.58013
[19] Barut, A. O.; Rączka, R., Theory of Group Representations and Applications (1980), Polish Scientific Publishers: Polish Scientific Publishers Warszawa · Zbl 0471.22021
[20] Christensen, O., An Introduction to Frames and Riesz Basis (2003), Birkhäuser: Birkhäuser Boston · Zbl 1017.42022
[21] Wojtaszczyk, P., A Mathematical Introduction to Wavelets, London Mathematical Society, Student Texts, vol. 37 (1997), Cambridge University Press · Zbl 0865.42026
[22] Candès, E. J.; Donoho, D. L., Continuous curvelet transform II. Discretization and frames, Appl. Comput. Harmon. Anal., 19, 198-222 (2005) · Zbl 1086.42023
[23] Labate, D.; Lim, W.-Q.; Kutyniok, G.; Weiss, G., Sparse multidimensional representation using shearlets, (Wavelets XI. Wavelets XI, San Diego, CA, 2005. Wavelets XI. Wavelets XI, San Diego, CA, 2005, SPIE Proceedings Series, vol. 5914 (2005), SPIE: SPIE Bellingham, WA), 254-262
[24] Frazier, M.; Garrigós, G.; Wang, K.; Weiss, G., A characterization of functions that generate wavelet and related expansion, J. Fourier Anal. Appl., 3, 883-906 (1997) · Zbl 0896.42022
[25] Labate, D.; Weiss, G.; Wilson Wavelets, E., Notices Amer. Math. Soc., 60, 66-76 (2013) · Zbl 1295.42024
[26] Humphreys, John F., A Course in Group Theory (1996), Oxford University Press · Zbl 0843.20001
[27] Antoine, J.-P.; Balazs, P., Frames and semi-frames, J. Phys. A, 44, 205201 (2011) · Zbl 1215.81114
[28] Penner, R. C., On Hilbert, Fourier, and wavelet transforms, Comm. Pure Appl. Math., 55, 772-814 (2002) · Zbl 1020.42016
[29] Roşca, D., Wavelet analysis on some surfaces of revolution via area preserving projection, Appl. Comput. Harmon. Anal., 30, 262-272 (2011) · Zbl 1213.42155
[31] Flornes, K.; Grossmann, A.; Holschneider, M.; Torresani, B., Wavelets on discrete fields, Appl. Comput. Harmon. Anal., 1, 137 (1994) · Zbl 0798.42021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.