×

Localization for Riesz means of Fourier expansions. (English) Zbl 1309.42010

Authors’ abstract: The classical Riemann localization principle states that if an integrable function of one variable vanishes in an open set, then its Fourier expansion converges to zero in this set. This principle does not immediately extend to several dimensions, and here we study the Hausdorff dimension of the sets of points where localization for Riesz means of Fourier expansions may fail.

MSC:

42B08 Summability in several variables
28A78 Hausdorff and packing measures
Full Text: DOI

References:

[1] Juan Antonio Barceló, Jonathan Bennett, Anthony Carbery, and Keith M. Rogers, On the dimension of divergence sets of dispersive equations, Math. Ann. 349 (2011), no. 3, 599 – 622. · Zbl 1229.35039 · doi:10.1007/s00208-010-0529-z
[2] A. Ĭ. Bastis, Convergence almost everywhere of expansions in eigenfunctions of the Laplace operator on a sphere, Mat. Zametki 33 (1983), no. 6, 857 – 862 (Russian).
[3] A. Ĭ. Bastis, The generalized localization principle for an \?-multiple Fourier integral in classes \?_{\?}, Dokl. Akad. Nauk SSSR 304 (1989), no. 3, 526 – 529 (Russian); English transl., Soviet Math. Dokl. 39 (1989), no. 1, 91 – 94.
[4] Luca Brandolini and Leonardo Colzani, Decay of Fourier transforms and summability of eigenfunction expansions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), no. 3, 611 – 638. · Zbl 1170.42303
[5] Anthony Carbery, José L. Rubio de Francia, and Luis Vega, Almost everywhere summability of Fourier integrals, J. London Math. Soc. (2) 38 (1988), no. 3, 513 – 524. · Zbl 0631.42004
[6] Anthony Carbery and Fernando Soria, Almost-everywhere convergence of Fourier integrals for functions in Sobolev spaces, and an \?²-localisation principle, Rev. Mat. Iberoamericana 4 (1988), no. 2, 319 – 337. · Zbl 0692.42001 · doi:10.4171/RMI/76
[7] Anthony Carbery and Fernando Soria, Sets of divergence for the localization problem for Fourier integrals, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 12, 1283 – 1286 (English, with English and French summaries). · Zbl 0915.42005 · doi:10.1016/S0764-4442(97)82354-3
[8] Anthony Carbery and Fernando Soria, Pointwise Fourier inversion and localisation in \?\(^{n}\), Proceedings of the conference dedicated to Professor Miguel de Guzmán (El Escorial, 1996), 1997, pp. 847 – 858. · Zbl 0896.42007 · doi:10.1007/BF02656490
[9] Anthony Carbery, Fernando Soria, and Ana Vargas, Localisation and weighted inequalities for spherical Fourier means, J. Anal. Math. 103 (2007), 133 – 156. · Zbl 1161.42005 · doi:10.1007/s11854-008-0004-x
[10] Leonardo Colzani, Regularity of spherical means and localization of spherical harmonic expansions, J. Austral. Math. Soc. Ser. A 41 (1986), no. 3, 287 – 297. · Zbl 0616.43010
[11] Leonardo Colzani, Time decay and regularity of solutions to the wave equation and convergence of Fourier expansions, J. Fourier Anal. Appl. 9 (2003), no. 1, 49 – 66. · Zbl 1069.35034 · doi:10.1007/s00041-003-0002-4
[12] Leonardo Colzani, Fourier expansions of functions with bounded variation of several variables, Trans. Amer. Math. Soc. 358 (2006), no. 12, 5501 – 5521. · Zbl 1161.42004
[13] Leonardo Colzani, Christopher Meaney, and Elena Prestini, Almost everywhere convergence of inverse Fourier transforms, Proc. Amer. Math. Soc. 134 (2006), no. 6, 1651 – 1660. · Zbl 1082.42006
[14] Leonardo Colzani and Marco Vignati, The Gibbs phenomenon for multiple Fourier integrals, J. Approx. Theory 80 (1995), no. 1, 119 – 131. · Zbl 0815.42008 · doi:10.1006/jath.1995.1007
[15] Jean-Pierre Kahane and Yitzhak Katznelson, Sur les ensembles de divergence des séries trigonométriques, Studia Math. 26 (1966), 305 – 306 (French). · Zbl 0143.28901
[16] Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. · Zbl 0819.28004
[17] Christopher Meaney, Divergent Jacobi polynomial series, Proc. Amer. Math. Soc. 87 (1983), no. 3, 459 – 462. · Zbl 0488.42031
[18] Christopher Meaney, Localization of spherical harmonic expansions, Monatsh. Math. 98 (1984), no. 1, 65 – 74. · Zbl 0543.43006 · doi:10.1007/BF01536909
[19] Emmanuel Montini, On the capacity of sets of divergence associated with the spherical partial integral operator, Trans. Amer. Math. Soc. 355 (2003), no. 4, 1415 – 1441. · Zbl 1035.42003
[20] Mark A. Pinsky, Fourier inversion for piecewise smooth functions in several variables, Proc. Amer. Math. Soc. 118 (1993), no. 3, 903 – 910. · Zbl 0783.42009
[21] Mark A. Pinsky and Michael E. Taylor, Pointwise Fourier inversion: a wave equation approach, J. Fourier Anal. Appl. 3 (1997), no. 6, 647 – 703. · Zbl 0901.42008 · doi:10.1007/BF02648262
[22] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501
[23] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. · Zbl 0821.42001
[24] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. · Zbl 0232.42007
[25] A. Zygmund, Trigonometric series. Vol. I, II, 3rd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002. With a foreword by Robert A. Fefferman. · Zbl 1084.42003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.