×

The transition rules of 2d linear cellular automata over ternary field and self-replicating patterns. (English) Zbl 1309.37020

Summary: We start with two-dimensional (2D) linear cellular automata (CA) in relation with basic mathematical structure. We investigate uniform linear 2D CA over ternary field, i.e. \(\mathbb{Z}_{3}\). Present work is related to theoretical and imaginary investigations of 2D linear CA. Even though the basic construction of a CA is a discrete model, its macroscopic level behavior at large times and on large scales could be a close approximation to a continuous system. Considering some statistical properties, someone may also study geometrical aspects of patterns generated by cellular automaton evolution. After iteratively applying the linear rules, CA have been shown capable of producing interesting complex behaviors. Some examples of CA produce remarkably regular behavior on finite configurations. Using some simple initial configurations, the produced pattern can be self-replicating regarding some linear rules. Here we deal with the theory 2D uniform periodic, adiabatic and reflexive boundary CA (2D PB, AB and RB) over the ternary field \(\mathbb{Z}_{3}\) and the applications of image processing for patterns generation. From the visual appearance of the patterns, it is seen that some rules display sensitive dependence on boundary conditions and their rule numbers.

MSC:

37B15 Dynamical aspects of cellular automata
68U10 Computing methodologies for image processing
Full Text: DOI

References:

[1] DOI: 10.1142/S0218127406016598 · Zbl 1185.37019 · doi:10.1142/S0218127406016598
[2] Adamatzky A., Compl. Syst. 16 pp 277– (2006)
[3] DOI: 10.1016/j.chaos.2005.03.048 · Zbl 1085.68096 · doi:10.1016/j.chaos.2005.03.048
[4] DOI: 10.1016/j.amc.2004.11.032 · Zbl 1078.37009 · doi:10.1016/j.amc.2004.11.032
[5] DOI: 10.1016/j.ipl.2007.02.002 · Zbl 1184.68342 · doi:10.1016/j.ipl.2007.02.002
[6] DOI: 10.1063/1.3525111 · doi:10.1063/1.3525111
[7] G. Alvarez, Knowledge-Based Intelligent Information and Engineering Systems, Lecture Notes in Computer Science 2773 (2003) p. 1207.
[8] DOI: 10.1016/j.ins.2008.07.010 · Zbl 1231.94058 · doi:10.1016/j.ins.2008.07.010
[9] DOI: 10.1162/1064546054407167 · doi:10.1162/1064546054407167
[10] DOI: 10.1016/S0898-1221(99)00227-8 · Zbl 0942.68074 · doi:10.1016/S0898-1221(99)00227-8
[11] DOI: 10.1016/S0167-2789(97)00132-2 · Zbl 0925.92007 · doi:10.1016/S0167-2789(97)00132-2
[12] Choudhury P. P., Int. J. Comput. Cogn. 8 pp 50– (2010)
[13] DOI: 10.1109/31.7600 · Zbl 0663.94022 · doi:10.1109/31.7600
[14] Chua L. O., The Universe as Automaton: From Simplicity and Symmetry to Complexity (2011)
[15] DOI: 10.1007/s10955-011-0202-2 · Zbl 1219.68119 · doi:10.1007/s10955-011-0202-2
[16] DOI: 10.1016/j.ins.2003.09.024 · Zbl 1089.68067 · doi:10.1016/j.ins.2003.09.024
[17] DOI: 10.1142/S0218127499000870 · doi:10.1142/S0218127499000870
[18] DOI: 10.1142/S0218127400001201 · Zbl 1090.37503 · doi:10.1142/S0218127400001201
[19] DOI: 10.1007/s10955-010-0103-9 · Zbl 1222.82034 · doi:10.1007/s10955-010-0103-9
[20] DOI: 10.1109/TCAD.2004.829808 · doi:10.1109/TCAD.2004.829808
[21] DOI: 10.1007/BF01691062 · Zbl 0182.56901 · doi:10.1007/BF01691062
[22] DOI: 10.1162/106454602320184220 · doi:10.1162/106454602320184220
[23] Inokuchi S., Bull. Inform. Cybern. 32 pp 23– (2000)
[24] DOI: 10.1016/j.chaos.2008.10.029 · doi:10.1016/j.chaos.2008.10.029
[25] DOI: 10.1016/S0898-1221(97)00021-7 · Zbl 0878.68027 · doi:10.1016/S0898-1221(97)00021-7
[26] DOI: 10.1016/S0898-1221(99)00080-2 · Zbl 0938.68726 · doi:10.1016/S0898-1221(99)00080-2
[27] DOI: 10.1016/0167-2789(84)90256-2 · doi:10.1016/0167-2789(84)90256-2
[28] DOI: 10.1142/S0129183111016348 · Zbl 1215.68142 · doi:10.1142/S0129183111016348
[29] DOI: 10.1142/S021812741250023X · Zbl 1270.37018 · doi:10.1142/S021812741250023X
[30] Martinez G. J., J. Cellul. Autom. 8 pp 233– (2013)
[31] DOI: 10.1142/S0218127413300358 · Zbl 1277.37025 · doi:10.1142/S0218127413300358
[32] DOI: 10.1201/9781439821916 · doi:10.1201/9781439821916
[33] DOI: 10.1038/358203a0 · doi:10.1038/358203a0
[34] DOI: 10.1007/BF01010423 · Zbl 0625.68038 · doi:10.1007/BF01010423
[35] DOI: 10.1126/science.259.5099.1282 · Zbl 1226.68046 · doi:10.1126/science.259.5099.1282
[36] DOI: 10.1016/S0065-2458(08)60667-1 · doi:10.1016/S0065-2458(08)60667-1
[37] Rubio C. F., Neural Parall. Sci. Comput. 12 pp 175– (2004)
[38] DOI: 10.1016/j.compeleceng.2013.11.010 · doi:10.1016/j.compeleceng.2013.11.010
[39] Sahin U., Appl. Math. Model. 125 pp 435– (2014)
[40] DOI: 10.1016/j.chaos.2006.09.052 · doi:10.1016/j.chaos.2006.09.052
[41] DOI: 10.1016/j.ins.2010.05.039 · Zbl 1206.68205 · doi:10.1016/j.ins.2010.05.039
[42] DOI: 10.1016/j.jfranklin.2010.02.002 · Zbl 1227.68076 · doi:10.1016/j.jfranklin.2010.02.002
[43] DOI: 10.1016/j.camwa.2011.09.066 · Zbl 1236.68191 · doi:10.1016/j.camwa.2011.09.066
[44] DOI: 10.12693/APhysPolA.123.480 · doi:10.12693/APhysPolA.123.480
[45] DOI: 10.1142/S0218127413501010 · Zbl 1272.37010 · doi:10.1142/S0218127413501010
[46] DOI: 10.1142/S021812741430002X · Zbl 1284.37010 · doi:10.1142/S021812741430002X
[47] DOI: 10.12693/APhysPolA.125.435 · doi:10.12693/APhysPolA.125.435
[48] Neumann J., The Theory of Self-Reproducing Automata (1966)
[49] DOI: 10.1103/RevModPhys.55.601 · Zbl 1174.82319 · doi:10.1103/RevModPhys.55.601
[50] DOI: 10.1142/S0218127411029240 · Zbl 1248.37018 · doi:10.1142/S0218127411029240
[51] DOI: 10.1016/j.ins.2008.10.024 · Zbl 1170.68025 · doi:10.1016/j.ins.2008.10.024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.