×

\(\mathcal{H}_\infty\) control of linear multidimensional discrete systems. (English) Zbl 1308.93074

Summary: This paper presents a comprehensive investigation on the \(\mathcal{H}_\infty\) control problem of linear multidimensional (\(n\)D) discrete systems described by the \(n\)D Roesser (local) state-space model. A Bounded Real Lemma consisting of a series of conditions is first established for general \(n\)D systems. The proposed \(n\)D conditions directly reduce to their 1D counterparts when \(n=1\), and besides several sufficient conditions which include the existing 2D results as special cases, some necessary and sufficient conditions are also shown to explore further insights to the considered problem. By applying a linear matrix inequality (LMI) condition of the \(n\)D Bounded Real Lemma, the \(n\)D \(\mathcal{H}_\infty\) control problem is then considered for three kinds of control laws, namely, static state feedback (SSF) control, dynamic output feedback (DOF) control and static output feedback (SOF) control, respectively. The \(n\)D \(\mathcal{H}_\infty\) SSF and DOF control problems are formulated in terms of an LMI and LMIs, respectively, and thus tractable by using any available LMI solvers. In contrast, the solution condition of the \(n\)D \(\mathcal{H}_\infty\) SOF controller is not strictly in terms of LMIs, therefore an iterative algorithm is proposed to solve this nonconvex problem. Finally, numerical examples are presented to demonstrate the application of these different kinds of \(n\)D \(\mathcal{H}_\infty\) control solutions to practical \(n\)D processes as well as the effectiveness of the proposed methods.

MSC:

93B36 \(H^\infty\)-control
93C55 Discrete-time control/observation systems
93C05 Linear systems in control theory
93C35 Multivariable systems, multidimensional control systems
Full Text: DOI

References:

[1] Agathoklis P. (1988) The Lyapunov equation for n-dimensional discrete systems. IEEE Transactions on Circuits and Systems 35: 448–451 · doi:10.1109/31.1762
[2] Agler J., McCarthy J. E. (1999) Nevanlinna–Pick interpolation on the bidisk. Journal FüR Die reine und angewandte Mathematik 506: 191–204 · Zbl 0919.32003 · doi:10.1515/crll.1999.506.191
[3] Ahmed A. R. E. (1980) On the stability of two-dimensional discrete systems. IEEE Transactions on Automatic Control 25(3): 551–552 · Zbl 0429.93051 · doi:10.1109/TAC.1980.1102352
[4] Ball J. A., Bolotnikov V. (2004) Realization and interpolation for Schur-Agler-class functions on domains with matrix polynomial defining function in $${ \(\backslash\)mathbb{C}\^n}$$ . Journal of Functional Analysis 213: 45–87 · Zbl 1061.47014 · doi:10.1016/j.jfa.2004.04.008
[5] Ball J. A., Malakorn T. (2004) Multidimensional linear feedback control systems and interpolation problems for multivariable holomorphic functions. Multidimensional Systems and Signal Processing 15: 7–36 · Zbl 1035.93037 · doi:10.1023/B:MULT.0000003929.38105.df
[6] Basu S. (1991) New results on stable multidimensional polynomials–part III: State-space interpretations. IEEE Transactions on Circuits and Systems 38: 755–768 · Zbl 0753.93066 · doi:10.1109/31.135747
[7] Bisiacco M., Fornasini E., Marchesini G. (1985) On some connections between BIBO and internal stability of two-dimensional filters. IEEE Transactions on Circuits and Systems 32: 948–953 · Zbl 0585.93048 · doi:10.1109/TCS.1985.1085801
[8] Bose N. K. (1982) Applied multidimensional systems theory. Van Nostrand Reinhold, New York · Zbl 0574.93031
[9] Souza C. E. (1989) On stability properties of solutions of the Riccati difference equation. IEEE Transactions on Automatic Control 34: 1313–1316 · Zbl 0689.93065 · doi:10.1109/9.40787
[10] Dewasurendra, D. A., & Bauer, P. H. (2008). A novel approach to grid sensor networks. In 15th IEEE international conference on electronics, circuits and systems (pp. 1191–1194).
[11] Doyle J. C., Glover K., Khargonekar P. P., Francis B. A. (1989) State-space solution to standard H 2 and H control problems. IEEE Transactions on Automatic Control 34: 831–847 · Zbl 0698.93031 · doi:10.1109/9.29425
[12] Doyle, J. C., Packard, A., & Zhou K. (1991). Review of LFTs, LMIs, and {\(\mu\)}. Proceedings of the CDC (pp. 1227–1232).
[13] Du C., Xie L. (1999) Stability analysis and stabilization of uncertain two-dimensional discrete systems: An LMI approach. IEEE Transactions on Circuits and Systems: I 46: 1371–1374 · Zbl 0970.93037 · doi:10.1109/81.802835
[14] Du C., Xie L. (2002) H control and filtering of two-dimensional systems. Springer, Berlin · Zbl 1013.93001
[15] Du C., Xie L., Soh Y. C. (2000) H filtering of 2-D discrete systems. IEEE Transactions on Signal Processing 48: 1760–1768 · Zbl 0996.93089 · doi:10.1109/78.845933
[16] Du C., Xie L., Zhang C. (2000) Solutions for H filtering of two-dimensional systems. Multidimensional Systems and Signal Processing 11: 301–320 · Zbl 0964.93030 · doi:10.1023/A:1008477527924
[17] Du C., Xie L., Zhang C. (2001) H control and robust stabilization of two-dimensional discrete time systems in Roesser models. Automatica 37: 205–211 · Zbl 0970.93013 · doi:10.1016/S0005-1098(00)00155-2
[18] Fornasini E., Marchesini G. (1980) Stability analysis of 2D systems. IEEE Transactions on Circuits and Systems CAS-27: 1210–1217 · Zbl 0458.93044 · doi:10.1109/TCS.1980.1084769
[19] Francis B. A. (1987) A course in H control theory. Springer, New York · Zbl 0624.93003
[20] Francis B. A., Zames G. (1984) On L optimal sensitivity theory for SISO feedback systems. IEEE Transactions on Automatic Control 29: 9–16 · Zbl 0601.93015 · doi:10.1109/TAC.1984.1103357
[21] Gahinet P., Apkarian P. (1994) A linear matrix inequality approach to H control. International Journal of Robust and Nonlinear Control 4: 421–448 · Zbl 0808.93024 · doi:10.1002/rnc.4590040403
[22] Galkowski K., Lam J., Xu S., Lin Z. (2003) LMI approach to state-feedback stabilization of multidimensional systems. International Journal of Control 76: 1428–1436 · Zbl 1048.93084 · doi:10.1080/00207170310001599113
[23] George, D. A. (1959). Continuous nonlinear systems. MIT-RLE Report, No. 355. · Zbl 0087.20801
[24] Ghaoui E. L., Oustry F., AitRami M. (1997) A cone complementarity linearization algorithms for static output feedback and related problems. IEEE Transactions on Automatic Control 42: 1171–1176 · Zbl 0887.93017 · doi:10.1109/9.618250
[25] Golub G. H., Van Loan C. F. (1996) Matrix computations. Johns Hopkins University Press, Baltimore · Zbl 0865.65009
[26] Goodman D. (1977) Some stability properties of two-dimensional linear shift-invariant digital filters. IEEE Transactions on Circuits and Systems: I 24: 201–208 · Zbl 0382.93063 · doi:10.1109/TCS.1977.1084322
[27] He Y., Wu M., Liu G. P., She J. H. (2008) Output feedback stabilization for a discrete-time system with a time-varying delay. IEEE Transactions on Automatic Control 53: 2372–2377 · Zbl 1367.93507 · doi:10.1109/TAC.2008.2007522
[28] Hinamoto T., Hamanaka T., Maekawa S. (1987) Rational approximation of three-dimensional digital filters. Journal of the Franklin institute 323: 373–383 · Zbl 0623.93072 · doi:10.1016/0016-0032(87)90025-1
[29] Iwasaki T., Skelton R.E. (1994) All controllers for the general H control problem: LMI existence conditions and state space formulas. Automatica 30: 1307–1317 · Zbl 0806.93017 · doi:10.1016/0005-1098(94)90110-4
[30] Iwasaki T., Skelton R.E., Geromel J.C. (1994) Linear quadratic suboptimal control with static output feedback. Systems Control Letters 23: 421–430 · Zbl 0873.49021 · doi:10.1016/0167-6911(94)90096-5
[31] Jury E. I. (1978) Stability of multidimensional scalar and matrix polynomials. Proceedings of the IEEE 66: 1018–1047 · doi:10.1109/PROC.1978.11079
[32] Kaczorek T. (1985) Two-dimensional linear systems. Springer, Berlin · Zbl 0593.93031
[33] Kurek J. E. (1985) Basic properties of q-dimensional linear digital systems. International Journal of Control 42: 119–128 · Zbl 0569.93044 · doi:10.1080/00207178508933350
[34] Lin Z. (1998) Feedback stabilizability of MIMO n-D linear systems. Multidimensional Systems and Signal Processing 9: 149–172 · Zbl 0896.93029 · doi:10.1023/A:1008230204251
[35] Lin Z. (2000) Feedback stabilization of MIMO nD linear systems. IEEE Transactions on Automatic Control 45: 2419–2424 · Zbl 0990.93107 · doi:10.1109/9.895573
[36] Lu W. S., Antoniou A. (1992) Two-dimensional digital filters. Marcel Dekker, New York · Zbl 0852.93001
[37] Malakorn, T. (2003). Multidimensional linear systems and robust control. Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
[38] Packard, A. K., Fan, M., & Doyle, J. (1988). A power method for the structured singular value. In Proceedings of the CDC (pp. 2132–2137).
[39] Packard, A., Zhou K., Pandey, P., & Becker, G. (1991). A collection of robust control problems leading to LMI’s. In Proceedings of the CDC (pp. 1245–1250)
[40] Park H., Regensburger G. (2007) Gröbner bases in control theory and signal processing. Walter de Gruyter, Berlin · Zbl 1130.93007
[41] Quadrat A. (2006) A lattice approach to analysis and synthesis problems. Mathematics of Control, Signals, and Systems 18(2): 147–186 · Zbl 1103.93021 · doi:10.1007/s00498-005-0159-2
[42] Roesser R. P. (1975) A discrete state-space model for linear image processing. IEEE Transactions on Automatic Control 20: 1–10 · Zbl 0304.68099 · doi:10.1109/TAC.1975.1100844
[43] Scherer, C. (1990). The Riccati inequality and state-space H optimal control. Ph.D. Dissertation, Universitat Wurzburg, Germany. · Zbl 0724.93027
[44] Schröder H., Blume H. (2000) One- and multidimensional signal processing: Algorithms and applications in image processing. Wiley, New York · Zbl 1052.94503
[45] Stoorvogel A. A. (1992) The H control problem: A state space approach. Prentice-Hall, Englewood Cliffs · Zbl 0751.93021
[46] Tzafestas S. G. (1986) Multidimensional systems: Techniques and applications. Marcel Dekker, New York · Zbl 0624.00025
[47] Tzafestas S. G., Pimenides T. G. (1982) Exact model-matching control of three-dimensional systems using state and output feedback. International Journal of Systems Science 13: 1171–1187 · Zbl 0494.93026 · doi:10.1080/00207728208926421
[48] Xiao C., Hill D. J., Agathoklis P. (1997) Stability and the Lyapunov equation for n-dimensional digital systems. IEEE Transactions on Circuits and Systems I 44: 614–621 · Zbl 0890.93052 · doi:10.1109/81.596942
[49] Xu L. (2007) Applications of Gröbner bases in synthesis of multidimensional control systems. In: Park H., Regensburger G. (eds) Gröbner bases in control theory and signal processing. Walter de Gruyter, Berlin · Zbl 1245.13022
[50] Xu L., Saito O., Abe K. (1994) Output feedback stabilizability and stabilization algorithms for 2D systems. Multidimensional Systems and Signal Processing 5: 41–60 · Zbl 0792.93105 · doi:10.1007/BF00985862
[51] Xu, L., Lin, Z., Ying, J. Q., Saito, O., & Anazawa, Y. (2004). Open problems in control of linear discrete multidimensional systems. In B. Vincent & M. Alexander (Eds.), Unsolved problems in mathematical systems and control theory (Part 6, pp. 212–220). Princeton: Princeton University Press.
[52] Xu L., Fan H., Lin Z., Bose N. K. (2008) A direct-construction approach to multidimensional realization and LFR uncertainty modeling. Multidimensional Systems and Signal Processing 19: 323–359 · Zbl 1213.93032 · doi:10.1007/s11045-008-0057-0
[53] Zames G. (1981) Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Transactions on Automatic Control 26: 301–320 · Zbl 0474.93025 · doi:10.1109/TAC.1981.1102603
[54] Zerz E. (2000) Topics in multidimensional linear systems theory. Springer, London · Zbl 1002.93002
[55] Zhou K., Doyle J. C., Glover K. (1996) Robust and optimal control. Prentice Hall, Englewood Cliffs · Zbl 0999.49500
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.