×

Duality of matrix pencils, Wong chains and linearizations. (English) Zbl 1308.15009

Summary: We consider two theoretical tools that have been introduced decades ago but whose usage is not widespread in modern literature on matrix pencils. One is dual pencils, a pair of pencils with the same regular part and related singular structures. They were introduced by V. Kublanovskaya in the 1980s. The other is Wong chains, families of subspaces, associated with (possibly singular) matrix pencils, that generalize Jordan chains. They were introduced by K.T. Wong in the 1970s. Together, dual pencils and Wong chains form a powerful theoretical framework to treat elegantly singular pencils in applications, especially in the context of linearizations of matrix polynomials.{ }We first give a self-contained introduction to these two concepts, using modern language and extending them to a more general form; we describe the relation between them and show how they act on the Kronecker form of a pencil and on spectral and singular structures (eigenvalues, eigenvectors and minimal bases). Then we present several new applications of these results to more recent topics in matrix pencil theory, including: constraints on the minimal indices of singular Hamiltonian and symplectic pencils, new sufficient conditions under which pencils in \(\mathbb{L}_1\), \(\mathbb{L}_2\) linearization spaces are strong linearizations, a new perspective on Fiedler pencils, and a link between the Möller-Stetter theorem and some linearizations of matrix polynomials.

MSC:

15A18 Eigenvalues, singular values, and eigenvectors
15A22 Matrix pencils

Software:

NLEVP
Full Text: DOI

References:

[1] Antoniou, E. N.; Vologiannidis, S., A new family of companion forms of polynomial matrices, Electron. J. Linear Algebra, 11, 78-87 (2004), (electronic) · Zbl 1085.15010
[2] Bai, Z.; Demmel, J.; Gu, M., An inverse free parallel spectral divide and conquer algorithm for nonsymmetric eigenproblems, Numer. Math., 76, 3, 279-308 (1997) · Zbl 0876.65021
[3] Benner, P.; Byers, R., An arithmetic for matrix pencils: theory and new algorithms, Numer. Math., 103, 4, 539-573 (2006) · Zbl 1101.65046
[4] Berger, T.; Ilchmann, A.; Trenn, S., The quasi-Weierstraß form for regular matrix pencils, Linear Algebra Appl., 436, 10, 4052-4069 (2012) · Zbl 1244.15008
[5] Berger, T.; Trenn, S., The quasi-Kronecker form for matrix pencils, SIAM J. Matrix Anal. Appl., 33, 2, 336-368 (2012) · Zbl 1253.15021
[6] Berger, T.; Trenn, S., The quasi-Kronecker form for matrix pencils, SIAM J. Matrix Anal. Appl., 34, 1, 94-101 (2013), (addition to [5]) · Zbl 1270.15008
[7] Bernstein, D. S., Matrix Mathematics—Theory, Facts, and Formulas (2009), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1183.15001
[8] Betcke, T.; Higham, N. J.; Mehrmann, V.; Schröder, C.; Tisseur, F., NLEVP: a collection of nonlinear eigenvalue problems, ACM Trans. Math. Software, 39, 2, 28 (2013) · Zbl 1295.65140
[9] Chu, E. K.-W.; Fan, H.-Y.; Lin, W.-W., A structure-preserving doubling algorithm for continuous-time algebraic Riccati equations, Linear Algebra Appl., 396, 55-80 (2005) · Zbl 1151.93340
[10] Cox, D. A.; Little, J.; O’Shea, D., Using Algebraic Geometry, Grad. Texts in Math., vol. 185 (2005), Springer: Springer New York · Zbl 1079.13017
[11] De Terán, F.; Dopico, F.; Van Dooren, P., Matrix polynomials with completely prescribed eigenstructure (2014), available from
[12] De Terán, F.; Dopico, F. M.; Mackey, D. S., Linearizations of singular matrix polynomials and the recovery of minimal indices, Electron. J. Linear Algebra, 18, 371-402 (2009) · Zbl 1190.15015
[13] De Terán, F.; Dopico, F. M.; Mackey, D. S., Fiedler companion linearizations and the recovery of minimal indices, SIAM J. Matrix Anal. Appl., 31, 4, 2181-2204 (2009/2010) · Zbl 1205.15024
[14] De Terán, F.; Dopico, F. M.; Mackey, D. S., Fiedler companion linearizations for rectangular matrix polynomials, Linear Algebra Appl., 437, 3, 957-991 (2012) · Zbl 1259.15031
[15] De Terán, F.; Dopico, F. M.; Mackey, D. S., Spectral equivalence of matrix polynomials and the index sum theorem, Linear Algebra Appl., 459, 264-333 (2014) · Zbl 1297.65038
[16] Demmel, J.; Dumitriu, I.; Holtz, O., Fast linear algebra is stable, Numer. Math., 108, 1, 59-91 (2007) · Zbl 1133.65015
[17] Forney, G. D., Minimal bases of rational vector spaces, with applications to multivariable linear systems, SIAM J. Control, 13, 493-520 (1975) · Zbl 0269.93011
[18] Gantmacher, F. R., The Theory of Matrices, vol. 1 (1998), AMS Chelsea Publishing: AMS Chelsea Publishing Providence, RI, Translated from the Russian by K.A. Hirsch, reprint of the 1959 translation · Zbl 0927.15001
[19] Gantmacher, F. R., The Theory of Matrices, vol. 2 (2000), AMS Chelsea Publishing: AMS Chelsea Publishing Providence, RI, Translated from the Russian by K.A. Hirsch, reprint of the 1959 translation · Zbl 0085.01001
[20] Gohberg, I.; Kaashoek, M. A.; Lancaster, P., General theory of regular matrix polynomials and band Toeplitz operators, Integral Equations Operator Theory, 11, 6, 776-882 (1988) · Zbl 0671.15012
[21] Gohberg, I.; Lancaster, P.; Rodman, L., Indefinite Linear Algebra and Applications (2005), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1084.15005
[22] Gohberg, I.; Lancaster, P.; Rodman, L., Matrix Polynomials (2009), Society for Industrial and Applied Mathematics (SIAM), Reprint of the 1982 original · Zbl 1170.15300
[23] Golub, G. H.; Van Loan, C. F., Matrix Computations (1996), Johns Hopkins University Press: Johns Hopkins University Press Baltimore, MD, Johns Hopkins Studies in the Mathematical Sciences · Zbl 0865.65009
[24] Kaczorek, T., Polynomial and Rational Matrices, Comm. Control Engrg. Ser. (2007), Springer-Verlag London Ltd.: Springer-Verlag London Ltd. London, Applications in dynamical systems theory · Zbl 1203.93034
[25] Kublanovskaya, V. N., The ab-algorithm and its modifications for spectral problems of linear pencils of matrices, Numer. Math., 43, 329-342 (1984) · Zbl 0542.65020
[26] Kublanovskaya, V. N., Methods and algorithms of solving spectral problems for polynomial and rational matrices, J. Math. Sci. (N. Y.), 96, 3, 3085-3287 (1999), (English translation) · Zbl 0928.65064
[27] Lancaster, P.; Psarrakos, P., A note on weak and strong linearizations of regular matrix polynomials (2006), Manchester Institute for Mathematical Sciences, Technical Report MIMS-EPrint 2006.72
[28] Lin, W.-W.; Mehrmann, V.; Xu, H., Canonical forms for Hamiltonian and symplectic matrices and pencils, Linear Algebra Appl., 302/303, 469-533 (1999), Special issue dedicated to Hans Schneider, Madison, WI, 1998 · Zbl 0947.15004
[29] Mackey, D. S.; Mackey, N.; Mehl, C.; Mehrmann, V., Vector spaces of linearizations for matrix polynomials, SIAM J. Matrix Anal. Appl., 28, 4, 971-1004 (2006), (electronic) · Zbl 1132.65027
[30] Mackey, D. S.; Mackey, N.; Mehl, C.; Mehrmann, V., Smith forms of palindromic matrix polynomials, Electron. J. Linear Algebra, 22, 53-91 (2011) · Zbl 1207.15013
[31] Malyshev, A. N., Calculation of invariant subspaces of a regular linear matrix pencil, Sibirsk. Mat. Zh., 30, 4, 76-86 (1989), 217 · Zbl 0684.65036
[32] Mehrmann, V.; Poloni, F., Doubling algorithms with permuted Lagrangian graph bases, SIAM J. Matrix Anal. Appl., 33, 3, 780-805 (2012) · Zbl 1260.65059
[33] Mehrmann, V.; Poloni, F., Using permuted graph bases in \(H_\infty\) control, Automatica J. IFAC, 49, 6, 1790-1797 (2013) · Zbl 1360.93224
[34] Mehrmann, V.; Voss, H., Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods, GAMM-Mitt., 27, 1029-1051 (2005)
[35] Noferini, V., The behaviour of the complete eigenstructure of a polynomial matrix under a generic rational transformation, Electron. J. Linear Algebra, 23, 607-624 (2012) · Zbl 1250.15014
[36] Poloni, F.; Reis, T., A deflation approach for large-scale Lur’e equations, SIAM J. Matrix Anal. Appl., 33, 4, 1339-1368 (2012) · Zbl 1263.15015
[37] Simonova, V. N., Modification of the AB-Algorithms and Their Applications to the Solution of System of Nonlinear Algebraic Equations (1990), Leningrad University: Leningrad University Leningrad, (in Russian), PhD thesis
[38] Tisseur, F.; Meerbergen, K., The quadratic eigenvalue problem, SIAM Rev., 43, 2, 235-286 (2001) · Zbl 0985.65028
[39] Vologiannidis, S.; Antoniou, E. N., A permuted factors approach for the linearization of polynomial matrices, Math. Control Signals Systems, 22, 4, 317-342 (2011) · Zbl 1248.93045
[40] Wong, K.-T., The eigenvalue problem \(\lambda T x + S x\), J. Difference Equ., 16, 270-280 (1974) · Zbl 0327.15015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.