×

Task-space coordination control of bilateral human-swarm systems. (English) Zbl 1307.93278

Summary: This paper proposes a system framework and control algorithms that enable a human operator to simultaneously interact with a group of swarm robots in a remote environment. In order to cope with kinematic dissimilarity and spatial discrepancy between human and swarm systems, a task-oriented control framework is developed. Based on the proposed control system, the human operator is able to convey action commands to the swarm, and the swarm robot can provide feedback information for the human operator. Additionally, the cognitive limitation of the human operator due to lack of entire information about the remote environment can be mitigated by utilizing the null-space of the swarm robot. Stability and performance of the proposed control system are investigated when the communication channels are subject to time delays and the system is influenced by non-passive external forces. The control algorithms are validated via numerical simulations on a 3-DOF robotic manipulator with a group of mobile swarm robot.

MSC:

93C85 Automated systems (robots, etc.) in control theory
68T40 Artificial intelligence for robotics
93D99 Stability of control systems
93A14 Decentralized systems
Full Text: DOI

References:

[1] Desai, J. P.; Ostrowski, J. P.; Kumar, V., Modeling and control of formations of nonholonomic mobile robots, IEEE Trans. Robotics Autom., 17, 6, 905-908 (2001)
[2] Bae, J.; Kim, Y., Adaptive controller design for spacecraft formation flying using sliding mode controller and neural networks, J. Frankl. Inst., 349, March (2), 578-603 (2012) · Zbl 1254.93085
[3] Wang, H., Flocking of networked uncertain euler-lagrange systems on directed graphs, Automatica, 49, September (9), 2774-2779 (2013) · Zbl 1364.93412
[4] Wai, R.-J.; Liu, C.-M.; Lin, Y.-W., Design of switching path-planning control for obstacle avoidance of mobile robot, J. Frankl. Inst., 348, May (4), 718-737 (2011) · Zbl 1227.93087
[5] Rezaee, H.; Abdollahi, F., Motion synchronization in unmanned aircrafts formation control with communication delays, Commun. Nonlinear Sci. Numer. Simul., 18, March (3), 744-756 (2013) · Zbl 1277.93006
[6] Tanner, H. G.; Pappas, G. J.; Kumar, V., Leader-to-formation stability, IEEE Trans. Robotics Autom., 20, 3, 443-455 (2004)
[7] Zhao, W.; Go, H., Quadcopter formation flight control combining MPC and robust feedback linearization, J. Frankl. Inst., 351, March (3), 1335-1355 (2014) · Zbl 1395.93031
[8] Dimarogonas, D. V.; Kyriakopoulos, K. J., Connectedness preserving distributed swarm aggregation for multiple kinematic robots, IEEE Trans. Robotics, 24, 5, 1213-1223 (2008)
[9] Cheah, C. C.; Hou, S. P.; Slotine, J. J.E., Region-based shape control for a swarm of robots, Automatica, 45, 10, 2406-2411 (2009) · Zbl 1179.93024
[10] Haghighi, R.; Cheah, C. C., Multi-group coordination control for robot swarms, Automatica, 48, 10, 2526-2534 (2012) · Zbl 1271.93010
[11] Sabattini, L.; Chopra, N.; Secchi, C., Decentralized connectivity maintenance for cooperative control of mobile robotic systems, Int. J. Robotics Res., 32, October (12), 1411-1423 (2013)
[12] Gazi, V., Swarm aggregations using artificial potentials and sliding-mode control, IEEE Trans. Robotics, 21, 6, 1208-1214 (2005)
[14] Stilwell, D. J.; Bishop, B. E.; Sylvester, C. A., Redundant manipulator techniques for partially decentralized path planning and control of a platoon of autonomous vehicles, IEEE Trans. Syst. Man Cybern.—Part B: Cybern., 35, 4, 842-848 (2005)
[15] Antonelli, G.; Chiaverini, S., Kinematic control of platoons of autonomous vehicles, IEEE Trans. Robotics, 22, 6, 1285-1292 (2006)
[16] Michael, N.; Fink, J.; Kumar, V., Cooperative manipulation and transportation with aerial robots, Auton. Robots, 30, 1, 73-86 (2011)
[17] Lynch, K. M.; Schwartz, I. B.; Yang, P.; Freeman, R. A., Decentralized environmental modeling by mobile sensor networks, IEEE Trans. Robotics, 24, June (3), 710-724 (2008)
[18] Burgard, W.; Moors, M.; Stachniss, C.; Schneider, F. E., Coordinated multi-robot exploration, IEEE Trans. Robotics, 21, 3, 376-386 (2005)
[20] Rodriguez-Seda, E. J.; Tory, J. J.; Erignac, C. A.; Murray, P.; Stipanović, D. M.; Spong, M. W., Bilateral teleoperation of multiple mobile agentscoordinated motion and collision avoidance, IEEE Trans. Control Syst. Technol., 18, 4, 984-992 (2010)
[21] Franchi, A.; Secchi, C.; Son, H. I.; Bülthoff, H. H.; Giordano, P. R., Bilateral teleoperation of groups of mobile robots with time-varying topology, IEEE Trans. Robotics, 28, 5, 1019-1033 (2012)
[24] Lee, D.; Spong, M. W., Passive bilateral teleoperation with constant time delay, IEEE Trans. Robotics, 22, April (2), 269-281 (2006)
[25] Spong, M. W.; Hutchinson, S.; Vidyasagar, M., Robot Modeling and Control (2006), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York
[26] Liu, Y.-C.; Chopra, N., Controlled synchronization of heterogeneous robotic manipulators in the task space, IEEE Trans. Robotics, 28, 1, 268-275 (2012)
[27] Nakamura, Y., Advanced Robotics: Redundancy and Optimization (1991), Addison-Wesley: Addison-Wesley Boston
[28] Liu, Y.-C.; Chopra, N., Control of semi-autonomous teleoperation system with time delays, Automatica, 49, 6, 1553-1565 (2013) · Zbl 1360.93070
[29] Zergeroglu, E.; Dawson, D. M.; Walker, I.; Setlur, P., Nonlinear tracking control of kinematically redundant robot manipulators, IEEE/ASME Trans. Mechatron., 9, March (1), 129-132 (2004)
[30] Siciliano, B., Kinematic control of redundant robot manipulatorsa tutorial, J. Intell. Robotic Syst., 3, 201-212 (1990)
[31] Schwager, M.; Rus, D.; Slotine, J.-J., Decentralized, adaptive coverage control for networked robots, Int. J. Robotics Res., 28 (2009)
[32] Stipanović, D. M.; Hokayem, P. F.; Spong, M. W.; Šiljak, D. D., Cooperative avoidance control for multiagent systems, ASME J. Dyn. Syst. Meas. Control, 129, September (5), 699-707 (2007)
[33] Tatlicioglu, E.; McIntyre, M. L.; Dawson, D. M.; Walker, I. D., Adaptive non-linear tracking control of kinematically redundant robot manipulators, Int. J. Robotic Autom., 23, March (2), 98-105 (2008)
[34] Hale, J. K.; Lunel, S. M.V., Introduction to Functional Differential Equations (1993), Springer-Verlag: Springer-Verlag New York · Zbl 0787.34002
[35] Khalil, H. K., Nonlinear Systems (2002), Prentice Hall: Prentice Hall New Jersey · Zbl 1003.34002
[36] Chopra, N.; Spong, M. W.; Lozano, R., Synchronization of bilateral teleoperators with time delay, Automatica, 44, August (8), 2142-2148 (2008) · Zbl 1283.93094
[37] Hua, C.-C.; Liu, X. P., Delay-dependent stability criteria of teleoperation systems with asymmetric time-varying delays, IEEE Trans. Robotics, 26, October (5), 925-932 (2010)
[38] Liu, Y.-C.; Chopra, N., Synchronization of networked mechanical systems with communication delays and human input, ASME J. Dyn. Syst. Meas. Control, 135, 4 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.