×

4-dimensional Frobenius manifolds and Painlevé VI. (English) Zbl 1307.53074

In the early 90’s B. Dubrovin observed that there is a bi-Hamiltonian hierarchy associated to any Frobenius manifold. In the paper under review the author extends the construction of Dubrovin to a tri-Hamiltonian hierarchy imposing however additional constraints on the Frobenius manifold.
The author proves that 4-dimensional Frobenius manifolds having a tri-Hamiltonian structure are in one-to-one correspondance with the solutions to the Painlevé VI equation. In his textbook B. Dubrovin has shown that the solution to the Painlevé VI equation defines a 3-dimensional Frobenius manifold. Using these two results, where the same equation plays a completely different role, the author describes explicitly the procedure of constructing all tri-Hamiltonian 4-dimensional Frobenius manifolds from the 3-dimensional Frobenius manifolds.

MSC:

53D45 Gromov-Witten invariants, quantum cohomology, Frobenius manifolds
34M55 Painlevé and other special ordinary differential equations in the complex domain; classification, hierarchies

References:

[1] Adler, M., van Moerbeke, P.: Recursion relations for unitary integrals, combinatorics and the Toeplitz lattice. Commun. Math. Phys. 237, 397-440 (2003) · Zbl 1090.37051
[2] Adler, M., Van Moerbeke, P.: Integrals over classical groups, random permutations, Toda and Toeplitz lattices. Commun. Pure Appl. Math. 54, 153-205 (2001) · Zbl 1086.34545
[3] Appell, P.: Sur les fonctions hypergéometriques de plusiers variables. Mem. des Sciences de Paris, III (1925) · JFM 51.0281.09
[4] Carlet, G.: The Hamiltonian structures of the two-dimensional Toda lattice and \[R\] R-matrices. Lett. Math. Phys. 71(3), 209-226 (2005) · Zbl 1084.37051 · doi:10.1007/s11005-005-0629-y
[5] Dinar, Y.: On classification and construction of algebraic Frobenius manifolds. J. Geom. Phys. 58, 9 (2008) · Zbl 1149.53322 · doi:10.1016/j.geomphys.2008.04.001
[6] Dubrovin, B.: Geometry of 2D topological field theories. In: Donagi, R., Dubrovin, B., Frenkel, E., Previato, E., Francavilla, M., Greco, S. (eds.) Integrable Systems and Quantum Groups, Lecture Notes in Mathematics, vol. 1620. Springer, Berlin, pp. 120-348 (1996) · Zbl 0665.32011
[7] Dubrovin, B.; Conte, R. (ed.), Painlevé transcendents and topological field theory, 287-412 (1999), Berlin · Zbl 1026.34095 · doi:10.1007/978-1-4612-1532-5_6
[8] Dubrovin, B.: On almost duality for Frobenius manifolds. In: Geometry, Topology and Mathematical Physics. Amer. Math. Soc. Transl. Ser., vol. 2, no. 212, pp. 75-132 (2004) · Zbl 1063.53092
[9] Dubrovin, B.: Flat pencils of metrics and Frobenius manifolds. In: Proceedings of 1997 Taniguchi Symposium “Integrable Systems and Algebraic Geometry”, pp. 47-72 (1998) · Zbl 0963.53054
[10] Dubrovin, B.: Differential geometry of moduli spaces and its applications to soliton equations and to topological conformal field theory. Surveys Differ. Geom. 4, 213-238 (1999) · Zbl 0947.35117 · doi:10.4310/SDG.1998.v4.n1.a5
[11] Dubrovin, B.: Geometry and analytic theory of Frobenius manifolds. In: Proceedings of the International Congress of Mathematicians, Doc. Math. Extra. vol. II, Berlin, pp. 315-326 (1998) · Zbl 0916.32018
[12] Dubrovin, B., Mazzocco, M.: Monodromy of certain Painlevé VI transcendents and reflection groups. Invent. Math. 141, 55-147 (2000) · Zbl 0960.34075 · doi:10.1007/PL00005790
[13] Dubrovin, B., Mazzocco, M.: On the reductions and classical solutions of the Schlesinger equations, differential equations and quantum groups. Andrey A. Bolibruch memorial volume, IRMA Lectures in Mathematics and Theoretical Physics, vol. 9, pp. 157-187 (2006) · Zbl 1356.32007
[14] Dubrovin, B., Novikov, S.: Hyrdodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory. Uspekhi Mat. Nauk 44, 29-98 [English translation in Russ. Math. Surveys 44, 35-124 (1989)] · Zbl 0712.58032
[15] Dubrovin, B., Novikov, S.: On Poisson brackets of hydrodynamic type. Soviet Math. Dokl. 279(2), 294-297 (1984) · Zbl 0591.58012
[16] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, G.: Higher transcendental functions, vol. I. McGraw-Hill, New York (1953) · Zbl 0051.30303
[17] Gambier, B.: Sur les equations differentielles du second ordre et du primier degrè dont l’ integrale est a points critiques fixes. Acta Math. 33 (1910) · Zbl 0999.34079
[18] Givental, A.: Twisted Picard-Lefschetz formulas. Funktsional. Anal. i Prilozhen. 22, 12-22 (1988) · Zbl 0665.32011
[19] Guzzetti, D.: Inverse problem and monodromy data for three-dimensional Frobenius manifolds. Math. Phys. Anal. Geom. 4, 245-291 (2001) · Zbl 1001.53061 · doi:10.1023/A:1012933622521
[20] Ismail, M., Pitman, J.: Algebraic evaluation of some Euler integrals, duplication formulae for Appell’s hypergeometric function \[F_1\] F1, and Brownian variations. Can. J. Math. Phys. 52, 961-981 (2000) · Zbl 0961.33012
[21] Korotkin, D., Shramchenko, V.: Riemann-Hilbert problem for Hurwitz Frobenius manifolds: regular singularities. J. Reine Angew. Math. 661, 125-187 (2011) · Zbl 1250.34072
[22] Krichever, I.M.: Integration of nonlinear equations by the methods of algebraic geometry. Funct. Anal. Appl. 11, 12-26 (1977) · Zbl 0368.35022 · doi:10.1007/BF01135528
[23] Kupershmidt, B.: Discrete Lax equations and differential-difference calculus. Asterisque 123, Societé Mathématique de France, Paris (1985) · Zbl 0565.58024
[24] Manin, Yu.I.: Sixth Painlevé equation, universal elliptic curve, and mirror of \[{\bf P}^2\] P2. In: Geometry of Differential Equations. Amer. Math. Soc. Transl., vol. 2, no. 186, pp. 131-151 (1996) · Zbl 0948.14025
[25] Mazzocco, M.: Picard and Chazy solutions to the Painlevé VI equation. Math. Ann. 321(1), 157-195 (2001) · Zbl 0999.34079 · doi:10.1007/PL00004500
[26] Okamoto, K.: Studies on the Painlevé equations. I. Sixth Painlevé equation PVI. Ann. Mat. Pura Appl. 146(4), 337-381 (1987) · Zbl 0637.34019
[27] Olver, P., Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E (53) 53(2), 1900-1906 (1996) · doi:10.1103/PhysRevE.53.1900
[28] Oevel, W., Ragnisco, \[O.: R\] R-matrices and higher Poisson brackets for integrable systems. Phys. A 161(1), 181-220 (1989) · Zbl 0717.35081
[29] Oevel, W., Ragnisco, O.: An abstract tri-Hamiltonian Lax hierarchy. Nonlinear evolution equations and dynamical systems. Res. Rep. Phys, Springer, Berlin, pp. 144-147 (1989) · Zbl 0368.35022
[30] Painlevé, P.: Sur les equations differentielles du second ordre et d’ordre superieur, dont linterable generale est uniforme. Acta Math. 25 (1902) · JFM 32.0340.01
[31] Pavlov, M.V., Tsarev, S.P.: Tri-Hamiltonian structures of the Egorov systems. Funct. Anal. Appl. 37(1), 32-45 (2003) · Zbl 1019.37048 · doi:10.1023/A:1022971910438
[32] Pavlyk, O.: Solutions to WDVV from generalized Drinfeld-Sokolov hierarchies. math-ph/0003020 (2003, preprint)
[33] Schlesinger, L.: Über eine Klasse von Differentsialsystemen beliebliger Ordnung mit festen kritischer Punkten. J. für Math. 141, 96-145 (1912) · JFM 43.0385.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.