×

On linear periods. (English) Zbl 1307.11063

Let \(D\) be a central division algebra over a number field \(k\) and consider the reductive \(k\)-group \(G = \mathrm{GL}_{2m}(D)\) with its subgroup \(H = \mathrm{GL}_m(D)^2\). The periods of an element in a cuspidal irreducible automorphic representation \(\pi\) of \(G(\mathbb{A}_k)\) with respect to \(H(\mathbb{A}_k)\) are called “linear periods” in this paper. Automorphic representations \(\pi\) with a nonzero \(H(\mathbb{A}_k)\)-period are called \(H\)-distinguished. Let \(G' = \mathrm{GL}_{2n}\) and \(H' = \mathrm{GL}_n^2\) be the split inner forms of \(G\) and \(H\), respectively, to which one can attach the Jacquet-Langlands transfer \(\pi'\) on \(G'(\mathbb{A}_k)\); similarly, there is a notion of \(H'\)-distinction for \(\pi'\). The following conjecture is proposed in this paper: \(\pi\) is \(H\)-distinguished if and only if \(\pi'\) is \(H'\)-distinguished.
The paper proposes an approach towards this conjecture based on comparison of relative trace formulas. A key ingredient thereof is established: the smooth transfer of test functions in the non-Archimedean local set-up. The proof is divided into two steps: (i) linearize the problem by passing to Lie algebras; (ii) prove that the smooth transfer commutes with Fourier transforms up to an explicit constant. The author combines some techniques in [J. L. Waldspurger, Compos. Math. 105, No. 2, 153–236 (1997; Zbl 0871.22005)] together with those in [W. Zhang, Ann. Math. (2) 180, No. 3, 971–1049 (2014; Zbl 1322.11048)] on Jacquet-Rallis trace formula. Some results on harmonic analysis of the symmetric spaces \(H \backslash G\), \(H' \backslash G'\) are also used. Note that one does not need a relative “fundamental lemma” in this case.

MSC:

11F70 Representation-theoretic methods; automorphic representations over local and global fields
11F72 Spectral theory; trace formulas (e.g., that of Selberg)

References:

[1] Aizenbud, A., Gourevitch, D.: Generalized Harish-Chandra descent, Gelfand pairs, and an Archimedean analog of Jacquet-Rallis’s theorem. Duke Math. J. 149(3), 509-567 (2009) · Zbl 1221.22018 · doi:10.1215/00127094-2009-044
[2] Aizenbud, A., Gourevitch, D.: Some regular pairs. Trans. Am. Math. Soc. 362, 3757-3777 (2010) · Zbl 1242.20054 · doi:10.1090/S0002-9947-10-05008-7
[3] Badulescu, A.I.: Global Jacquet-Langlands correspondence, multiplicity one and classification of automorphic representations. Invent. Math. 172, 383-438 (2008) · Zbl 1158.22018 · doi:10.1007/s00222-007-0104-8
[4] Badulescu, A.I., Renard, D.: Unitary dual of \[\text{ GL }(n)\] GL(n) at Archimedean places and global Jacquet-Langlands correspondence. Compos. Math. 146(5), 1115-1164 (2010) · Zbl 1216.22014 · doi:10.1112/S0010437X10004707
[5] Bernstein, I.N., Zelevinsky, A.V.: Representations of the group \[\text{ GL }(n, F)\] GL(n,F), where \[FF\] is a local non-Archimedean field. Uspekhi Mat. Nauk 31(3), 5-70 (1976) · Zbl 0342.43017
[6] Deligne, P., Kazhdan, D., Vigneras, M.-F.: Représentations des algèbres centrales simples p-adiques. Représentations des groupes réductifs sur corps local, pp. 33-117. Herman, Paris (1984) · Zbl 0583.22009
[7] Friedberg, S., Jacquet, H.: Linear periods. J. Reine Angew. Math. 443, 91-139 (1993) · Zbl 0782.11033
[8] Gan, W.T.: Bessel and Fourier-Jacobi Models of the Weil representation. Forthcoming · Zbl 1052.22014
[9] Gan, W.T., Takeda, S.: On Shalika periods and a theorem of Jacquet-Martin. Am. J. Math. 132(2), 475-528 (2010) · Zbl 1222.11067 · doi:10.1353/ajm.0.0109
[10] Getz, J.R.: An introduction to automorphic representations. http://www.math.duke.edu/ jgetz/aut_reps · Zbl 07779792
[11] Hahn, H.: A simple twisted relative trace formula. Int. Math. Res. Not. 2009(21), 3957-3978 (2009) · Zbl 1210.22013
[12] Harish-Chandra: (notes by G. van Dijk) Harmonic Analysis on Reductive \[p\] p-Adic Groups. Lecture Notes in Mathematics, vol. 162. Springer, Berlin (1970) · Zbl 0202.41101
[13] Harish-Chandra: Admissible invariant distributions on reductive \[p\] p-adic groups. Notes by S. DeBacker and P. J. Sally, University Lecture Series, vol. 16, AMS (1999) · Zbl 0928.22017
[14] Jacquet, H., Martin, K.: Shalika periods on \[\text{ GL }_2(D)\] GL2(D) and \[\text{ GL }_4\] GL4. Pac. J. Math. 233(2), 341-370 (2007) · Zbl 1221.11125 · doi:10.2140/pjm.2007.233.341
[15] Jacquet, H., Rallis, S.: Uniqueness of linear periods. Compos. Math. 102, 65-123 (1996) · Zbl 0855.22018
[16] Jacquet, H., Shalika, J.: Exterior Aquare L-Functions. Automorphic Forms, Shimura Varieties, and L-functions, Vol II, Perspectives in Mathematics 11. Academic Press, London (1990) · Zbl 0695.10025
[17] Jiang, D., Nien, C., Qin, Y.: Local Shalika models and functoriality. Manuscr. Math. 127, 187-217 (2008) · Zbl 1167.11021 · doi:10.1007/s00229-008-0200-0
[18] Prasad, D.: Some remarks on representations of a division algebra and of the Galois group of a local field. J. Number Theory 74, 73-97 (1999) · Zbl 0931.11054 · doi:10.1006/jnth.1998.2289
[19] Prasad, D., Takloo-Bighash, R.: Bessel models for \[\text{ GSp }(4)\] GSp(4). J. Reine Angew. Math. 655, 189-243 (2011) · Zbl 1228.11070
[20] Rader, C., Rallis, S.: Spherical characters on \[p\] p-adic symmetric spaces. Am. J. Math. 118(1), 91-178 (1996) · Zbl 0861.22011 · doi:10.1353/ajm.1996.0003
[21] Raghuram, A.: On representations of \[p\] p-adic \[\text{ GL }_2(D)\] GL2(D). Pac. J. Math. 206(2), 451-464 (2002) · Zbl 1052.22014 · doi:10.2140/pjm.2002.206.451
[22] Vinberg, E.B.: The Weyl group of a graded Lie algebra. Izv. Akad. Nauk SSSR 10, 463-495 (1976) · Zbl 0371.20041
[23] Waldspurger, J.-L.: Une formule des traces locale pour les algebres de Lie \[p\] p-adiques. J. Reine Angew. Math. 465, 41-99 (1995) · Zbl 0829.11030
[24] Waldspurger, J.-L.: Le lemme fondamental implique le transfert. Compos. Math. 105, 153-236 (1997) · Zbl 0871.22005 · doi:10.1023/A:1000103112268
[25] Weil, A.: Sur certaines groupes d’opérateurs unitaires. Acta Math. 111, 143-211 (1964) · Zbl 0203.03305 · doi:10.1007/BF02391012
[26] Yu, C.-F.: Characteristic polynomials of central simple algebras. Taiwan. J. Math. 17(1), 351-359 (2013) · Zbl 1282.11153
[27] Zhang, C.: Towards the smooth transfer for certain relative trace formulae. arXiv:1302.1639 · Zbl 1282.11153
[28] Zhang, W.: Fourier transform and the global Gan-Gross-Prasad conjecture for unitary groups. Ann. Math. 180(3), 971-1049 (2014) · Zbl 1322.11048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.