×

Effectiveness of depolarizing noise in causing sudden death of entanglement. (English) Zbl 1306.81014

Summary: Continuing on the recent observation that sudden death of entanglement can occur even when a single qubit of a 2-qubit state is exposed to noisy environment [K. O. Yashodamma and it Sudha, “Is composite noise necessary for sudden”, Res. Phys. 3 41–45 (2013; doi:10.1016/j.rinp.2013.02.001)], we examine the local action of a noise on bipartite qubit-qutrit and qutrit-qutrit systems. We show that depolarizing noise causes sudden death of entanglement in both qubit-qutrit and qutrit-qutrit systems even when it acts only on one part of the system. While generalized amplitude damping noise also causes finite-time disentanglement in qubit-qutrit states, the entanglement sudden death occurs much faster due to depolarizing noise. This result strengthens the observation [loc. cit.] that depolarizing noise is more effective than other noise models in causing sudden death of entanglement.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81S22 Open systems, reduced dynamics, master equations, decoherence

References:

[1] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) · Zbl 1049.81015
[2] Zurek, W.H.: Decoherence, einselection and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003) · Zbl 1205.81031 · doi:10.1103/RevModPhys.75.715
[3] Schlosshawer, M.: Decoherence, the measurement problem and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267 (2005) · doi:10.1103/RevModPhys.76.1267
[4] Simon, C., Kempe, J.: Robustness of multiparty entanglement. Phys. Rev. A 65, 052327 (2002) · doi:10.1103/PhysRevA.65.052327
[5] Dür, W., Briegel, H.J.: Stability of macroscopic entanglement under decoherence. Phys. Rev. Lett. 92, 180403 (2004) · doi:10.1103/PhysRevLett.92.180403
[6] Aolita, L., et al.: Scaling laws for the decay of multiqubit entanglement. Phys. Rev. Lett. 100, 080501 (2008) · doi:10.1103/PhysRevLett.100.080501
[7] Diósi, L.. In: Benatti, F., Floreanini, R. (eds.) Irreversible Quantum Dynamics. Springer, Berlin (2003) · Zbl 1030.00044
[8] Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004) · doi:10.1103/PhysRevLett.93.140404
[9] Dodd, P.J., Halliwell, J.J.: Disentanglement and decoherence by open system dynamics. Phys. Rev. A 69, 052105 (2004) · doi:10.1103/PhysRevA.69.052105
[10] Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006) · doi:10.1103/PhysRevLett.97.140403
[11] Roszak, K., Machnikowski, P.: Complete disentanglement by partial pure dephasing. Phys. Rev. A. 73, 022313 (2006) · doi:10.1103/PhysRevA.73.022313
[12] Yönac, M., Yu, T., Eberly, J.H.: Sudden death of entanglement of two Jaynes-Cummings atoms. J. Phys. B 39, S621 (2006) · doi:10.1088/0953-4075/39/15/S09
[13] Yu, T., Eberly, J.H.: Sudden death of entanglement: classical noise effects. Opt. Commun. 264, 393 (2006) · doi:10.1016/j.optcom.2006.01.061
[14] Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 316, 555 (2007) · doi:10.1126/science.1137568
[15] Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed X states. Quantum Inf. Comput. 7, 459 (2007) · Zbl 1152.81830
[16] Cui, H.T., Li, K., Yi, X.X.: Study on the sudden death of entanglement. Phys. Lett. A 365, 44 (2007) · Zbl 1203.81011 · doi:10.1016/j.physleta.2006.12.049
[17] Almeida, M.P., et al.: Environment induced sudden death of entanglement. Science 316, 579 (2007) · doi:10.1126/science.1139892
[18] Ann, K., Jaegar, G.: Local dephasing induced entanglement sudden death in two component finite dimensional systems. Phys. Rev. A 76, 044101 (2007) · doi:10.1103/PhysRevA.76.044101
[19] Ali, M., Rau, A.R.P., Ranade, K.: Disentanglement in qubit-qutrit systems, arXiv:0710.2238 [quantph]
[20] Ann, K., Jaeger, G.: Entanglement sudden death in qubit-qutrit systems. Phys. Lett. A 372, 579-583 (2008) · Zbl 1217.81010 · doi:10.1016/j.physleta.2007.07.070
[21] Li, J., Chalapat, K., Paraoanu, G.S.: Enhancement of sudden death of entanglement for driven qubits. J. Low Temp. Phys. 153, 294 (2008) · doi:10.1007/s10909-008-9843-1
[22] Bellomo, B., et al.: Entanglement degradation in the solid state: interplay of adiabatic and quantum noise. Phys. Rev. A 81, 062309 (2010) · doi:10.1103/PhysRevA.81.062309
[23] Khan, S.: Generation and sudden death of entanglement in qubit-qutrit systems with depolarising noise. Math. Struct. Comput. Sci. 23, 1220 (2013) · Zbl 1286.81021 · doi:10.1017/S0960129512000977
[24] Franco, R.L., et al.: Entanglement dynamics in superconducting qubits affected by local bistable impurities. Phys. Scr. T147, 014019 (2012) · doi:10.1088/0031-8949/2012/T147/014019
[25] Qian, X.-F., Eberly, J.H.: Initial conditions and entanglement sudden death. Phys. Lett. A 376, 2931 (2012) · doi:10.1016/j.physleta.2012.08.007
[26] Yashodamma, K.O., Sudha.: Is composite noise necessary for sudden death of entanglement? J. Res. Phys. 3, 41 (2013) · Zbl 1306.81014
[27] Rau, A.R.P., Ali, M., Alber, G.: Hastening delaying or averting sudden death of quantum entanglement. Eur. Phys. Lett. 82, 40002 (2008) · doi:10.1209/0295-5075/82/40002
[28] Bellomo, B., Franco, R.L., Maniscalco, S., Compagno, G.: Entanglement trapping in structural environments. Phys. Rev. A 78, 060302(R) (2008) · doi:10.1103/PhysRevA.78.060302
[29] Ali, M., Alber, G., Rau, A.R.P.: Manipulating entanglement sudden death of two-qubit X-states in zero and finite-temperature reservoirs. J. Phys. B 42, 025501 (2009) · doi:10.1088/0953-4075/42/2/025501
[30] Bellomo, B., Franco, R.L., Compagno, G.: Long-time preservation of nonlocal entanglement. Adv. Sci. Lett. 2, 459 (2009) · doi:10.1166/asl.2009.1054
[31] Siomau, M., Kamli, A.A.: Defeating entanglement sudden death by a single local filtering. Phys. Rev. A 86, 032304 (2012) · doi:10.1103/PhysRevA.86.032304
[32] Yashodamma, K.O., Geetha, P.J., Sudha.: Purification and retrieval of entanglement via single local filtering. Int. J. Quantum Inf. 12, 1450004 (2014) · Zbl 1288.81016
[33] D’Arrigo, A. et al.: Recovering Entanglement by Local Pperations. arXiv:1207.3294 [quantph]
[34] Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996) · Zbl 0947.81003 · doi:10.1103/PhysRevLett.77.1413
[35] Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1 (1996) · Zbl 1037.81501 · doi:10.1016/S0375-9601(96)00706-2
[36] Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2007) · doi:10.1103/PhysRevA.65.032314
[37] Salimi, S., Soltanzadeh, M.M.: Investigation of quantum roulette. Int. J. Quantum Inf. 7, 615 (2009) · Zbl 1172.81008 · doi:10.1142/S0219749909004992
[38] Ann, K., Jaeger, G.: Finite-time destruction of entanglement and non-locality by environmental influences. Found. Phys. 39, 790 (2009) · Zbl 1175.81045
[39] Ramzan, M., Khan, M.K.: Decoherence and entanglement degradation of a qubit-qutrit system in non-inertial frames. Quantum Inf. Process 11, 443-454 (2012) · Zbl 1239.81026 · doi:10.1007/s11128-011-0257-7
[40] Horodecki, M., Horodecki, P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59, 4206 (1999) · Zbl 0984.81007 · doi:10.1103/PhysRevA.59.4206
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.