×

Hierarchical classes models for three-way three-mode binary data: interrelations and model selection. (English) Zbl 1306.62392

Summary: Several hierarchical classes models can be considered for the modeling of three-way three-mode binary data, including the INDCLAS model [I. Van Mechelen et al., ibid. 60, No. 4, 505–521 (1995; Zbl 0864.92021)], the Tucker3-HICLAS model [E. Ceulemans et al., ibid. 68, No. 3, 413–433 (2003; Zbl 1306.62393)], the Tucker2-HICLAS model [the authors, ibid. 69, No. 3, 375–399 (2004; Zbl 1306.62391)], and the Tucker1-HICLAS model that is introduced in this paper. Two questions then may be raised: (1) how are these models interrelated, and (2) given a specific data set, which of these models should be selected, and in which rank? In the present paper, we deal with these questions by (1) showing that the distinct hierarchical classes models for three-way three-mode binary data can be organized into a partially ordered hierarchy, and (2) by presenting model selection strategies based on extensions of the well-known scree test and on the Akaike information criterion. The latter strategies are evaluated by means of an extensive simulation study and are illustrated with an application to interpersonal emotion data. Finally, the presented hierarchy and model selection strategies are related to corresponding work by H. A. L. Kiers [“Towards a standardized notation and terminology in multiway analysis”, J. Chemometrics 14, No. 3, 105–122 (1991; doi:10.1002/1099-128X(200005)] for principal component models for three-way three-mode real-valued data.

MSC:

62P15 Applications of statistics to psychology
62H25 Factor analysis and principal components; correspondence analysis
65F30 Other matrix algorithms (MSC2010)
15A69 Multilinear algebra, tensor calculus
15A72 Vector and tensor algebra, theory of invariants

Software:

Tucker3-HICLAS
Full Text: DOI

References:

[1] Akaike H. (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov B.N., Csaki F. (eds) Second International Symposium on Information Theory. Academiai Kiado, Budapest, pp 267–281 · Zbl 0283.62006
[2] Bozdogan H. (1987) Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions. Psychometrika 52:345–370 · Zbl 0627.62005 · doi:10.1007/BF02294361
[3] Bozdogan H. (2000) Akaike’s information criterion and recent developments in informational complexity. Journal of Mathematical Psychology 44:62–91 · Zbl 1047.62501 · doi:10.1006/jmps.1999.1277
[4] Cattell R.B. (1966) The meaning and strategic use of factor analysis. In: Cattell R.B. (ed) Handbook of Multivariate Experimental Psychology. Rand McNally, Chicago, pp 174–243
[5] Ceulemans E., Van Mechelen I. (2004) Tucker2 hierarchical classes analysis. Psychometrika 69:413–433 · Zbl 1306.62391 · doi:10.1007/BF02295642
[6] Ceulemans E., Van Mechelen I., Leenen I. (2003) Tucker3 hierarchical classes analysis. Psychometrika 68:413–433 · Zbl 1306.62393 · doi:10.1007/BF02294735
[7] De Boeck P., Rosenberg S. (1988) Hierarchical classes: model and data analysis. Psychometrika 53:361–381 · Zbl 0718.62001 · doi:10.1007/BF02294218
[8] Fowlkes E.B., Freeny A.E., Landwehr J.M. (1988) Evaluating logistic models for large contingency tables. Journal of the American Statistical Association 83:611–622 · doi:10.1080/01621459.1988.10478640
[9] Haggard E.A. (1958) Intraclass Correlation and the Analysis of Variance. Dryden, New York · Zbl 0097.34501
[10] Kiers H.A.L. (1991) Hierarchical relations among three-way methods. Psychometrika 56:449–470 · Zbl 0760.62059 · doi:10.1007/BF02294485
[11] Kiers H.A.L. (2000) Towards a standardized notation and terminology in multiway analysis. Journal of Chemometrics 14:105–122 · doi:10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I
[12] Kim K.H. (1982) Boolean Matrix Theory. Marcel Dekker, New York · Zbl 0495.15003
[13] Kirk R.E. (1982) Experimental design: Procedures for the behavioral sciences (2nd edition). Brooks/Cole, Belmont, CA · Zbl 0414.62054
[14] Kroonenberg P.M. (1983) Three-mode Principal Component Analysis: Theory and Applications. DSWO, Leiden · Zbl 0513.62059
[15] Kroonenberg P.M., Oort F.J. (2003) Three-mode analysis of multimode covariance matrices. British Journal of Mathematical and Statistical Psychology 56:305–336 · doi:10.1348/000711003770480066
[16] Kroonenberg P.M., Van der Voort T.H.A. (1987) Multiplicatieve decompositie van interacties bij oordelen over de werkelijkheidswaarde van televisiefilms [Multiplicative decomposition of interactions for judgements of realism of television films]. Kwantitatieve Methoden 8:117–144
[17] Kuppens P., Van Mechelen I., Smits D.J.M., De Boeck P., Ceulemans E. (2005) Individual differences in appraisal and emotion: The case of anger and irritation, submitted
[18] Leenen I., Van Mechelen I. (2001) An evaluation of two algorithms for hierarchical classes analysis. Journal of Classification 18:57–80 · Zbl 1040.91086 · doi:10.1007/s00357-001-0005-2
[19] Leenen I., Van Mechelen I., De Boeck P., Rosenberg S. (1999) INDCLAS: A three-way hierarchical classes model. Psychometrika 64:9–24 · Zbl 1365.62456 · doi:10.1007/BF02294316
[20] Timmerman M.E., Kiers H.A.L. (2000) Three-mode principal components analysis: Choosing the numbers of components and sensitivity to local optima. British Journal of Mathematical and Statistical Psychology 53:1–16 · doi:10.1348/000711000159132
[21] Van Mechelen I. (1991) Symptom and diagnosis inference based on implicit theories of psychopathology: A review. Cahiers de Psychologie Cognitive 11:155–171
[22] Van Mechelen I., De Boeck P. (1989) Implicit taxonomy in psychiatric diagnosis: A case study. Journal of Social and Clinical Psychology 8:276–287 · doi:10.1521/jscp.1989.8.3.276
[23] Van Mechelen I., De Boeck P., Rosenberg S. (1995) The conjunctive model of hierarchical classes. Psychometrika 60:505–521 · Zbl 0864.92021 · doi:10.1007/BF02294326
[24] Vansteelandt K., Van Mechelen I. (1998) Individual differences in situation-behavior profiles: A triple typology model. Journal of Personality and Social Psychology 75:751–765 · doi:10.1037/0022-3514.75.3.751
[25] Wilks S.S. (1938) The large sample distribution of the likelihood ratio for testing composite hypotheses. Annals of Mathematical Statistics 9:60–62 · Zbl 0018.32003 · doi:10.1214/aoms/1177732360
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.