×

On the topological entropy of the irregular part of \(V\)-statistics multifractal spectra. (English) Zbl 1306.37028

Summary: Let \((X, d)\) be a compact metric space and \(f : X \to X\), if \( X^{r}\) is the product of \(r\)-copies of \(X, r \geq 1\), and \(\Phi : {X}^{r} \to \mathbb R\) then the multifractal decomposition for \(V\)-statistics is given by \[ E_\Phi (\alpha)=\left\{x:\lim\limits_{n\to\infty}\frac{1}{n^r} \sum\limits_{0\leq i_1\leq\dots\leq i_r \leq n-1} \Phi (f^{i_1}(x), \dots, f^{i_r}(x))=\alpha \right\}. \] The irregular part, or historic set, of the spectrum is the set points \(x \in X\), for which the limit does not exist.{ }In this article we prove that for dynamical systems with specification, the irregular part of the \(V\) statistics spectrum has topological entropy equal to that of the whole space \( X\).

MSC:

37C45 Dimension theory of smooth dynamical systems
37B40 Topological entropy
Full Text: DOI

References:

[1] Barreira L, Electron. Res. Announc. Amer. Math. Soc 3 pp 114– (1997) · Zbl 0887.58042 · doi:10.1090/S1079-6762-97-00035-8
[2] Bergelson V., Ergod. Th. and Dynam. Sys 7 pp 337– (1987) · Zbl 0645.28012 · doi:10.1017/S0143385700004090
[3] Bourgain J., J. Reine Angew Math 404 pp 140– (1990)
[4] Bowen R., Trans. Amer. Math. Soc 184 pp 125– (1973) · doi:10.1090/S0002-9947-1973-0338317-X
[5] Fan A., J. London. Math. Soc 64 pp 229– (2001) · Zbl 1011.37003 · doi:10.1017/S0024610701002137
[6] Fan A., Disc. Cont. Dynam. Sys 21 pp 1103– (2008) · Zbl 1153.37318 · doi:10.3934/dcds.2008.21.1103
[7] Furstenberg H., J. d’ Analyse Math 31 pp 204– (1977) · Zbl 0347.28016 · doi:10.1007/BF02813304
[8] Takens F., Ergod. Th. and Dynam. Sys 23 pp 317– (2003) · Zbl 1042.37020 · doi:10.1017/S0143385702000913
[9] Pfister C. E., Ergod. Th. And Dynam. Sys 27 pp 1– (2007) · Zbl 1130.37329 · doi:10.1017/S0143385706000824
[10] DOI: 10.1080/14689360903156237 · Zbl 1186.37034 · doi:10.1080/14689360903156237
[11] Walters P., An introduction to Ergodic Theory (1982) · Zbl 0475.28009 · doi:10.1007/978-1-4612-5775-2
[12] Zhou X., J. Math. Analysis and its applications 389 pp 394– (2012) · Zbl 1238.37003 · doi:10.1016/j.jmaa.2011.11.066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.