×

Natural extensions for piecewise affine maps via Hofbauer towers. (English) Zbl 1306.37005

The authors present a method for obtaining some geometric natural extensions of piecewise continuous maps with locally constant Jacobian. More precisely, let \(X\) be a compact subset of \({\mathbb{R}^n},\) \({\mathcal{B}}\) be the Lebesgue \(\sigma\)-algebra on \(X\), \(\mu\) be a probability measure on \({(X,\mathcal{B})}\) and consider a map \({T:X\to X}\). It is assumed that this system have a partition with additional properties. Using this partition the authors define new system (Hofbauer tower) \({(\hat{X},\hat{\mathcal{B}})}\), with a map \({\hat{T}:\hat{X}\to\hat{X}}\) and some measures \(\hat{\mu}_n\) on \({(\hat{X},\hat{\mathcal{B}})}\). If the sequence \({\hat{\mu}_n}\) converges in the weak topology to a non-zero measure \({\hat{\mu}}\), then for system \({(X,\mathcal{B}, \hat{\mu}\circ\pi^{-1}, T)}\) the authors construct the natural extension \({(Y,\mathcal{C},\nu, F)},\) where \(\pi:\hat{X}\to{X}\) is canonical projection and \(Y\) consists of pieces which extend the pieces of \(\hat{X}\) by one dimension. At the end of paper, some examples of transformations are considered.

MSC:

37A05 Dynamical aspects of measure-preserving transformations
37B10 Symbolic dynamics
28A75 Length, area, volume, other geometric measure theory

References:

[1] Akiyama, S.: On the boundary of self affine tilings generated by Pisot numbers. J. Math. Soc. Jpn. 54(2), 283-308 (2002) · Zbl 1032.11033 · doi:10.2969/jmsj/05420283
[2] Barnes, J., Koss, L.: One-sided Lebesgue Bernoulli maps of the sphere of degree \[n^2\] n2 and \[2n^22\] n2. Int. J. Math. Math. Sci. 23(6), 383-392 (2000) · Zbl 0984.37050 · doi:10.1155/S0161171200001484
[3] Bose, C.: Generalized Baker’s transformation. Ergodic Theory Dyn. Syst. 9(1), 1-17 (1989) · Zbl 0651.28011 · doi:10.1017/S0143385700004788
[4] Bruin, H.: Combinatorics of the Kneading Map. In: Proceedings of the Conference “Thirty Years after Sharkovskiĭ’s Theorem: New Perspectives” (Murcia, 1994), vol. 5, pp. 1339-1349 (1995) · Zbl 0969.37012
[5] Bruin, H., Hawkins, J.: Rigidity of smooth one-sided Bernoulli endomorphisms. New York J. Math. 15, 451-483 (2009) · Zbl 1189.37002
[6] Bruin, H., Todd, M.: Markov extensions and lifting measures for complex polynomials. Ergodic Theory Dyn. Syst. 27(3), 743-768 (2007) · Zbl 1130.37370 · doi:10.1017/S0143385706000976
[7] Bruin, H., Todd, M.: Equilibrium states for interval maps: the potential \[-t \log |Df|\]-tlog|Df|. Ann. Sci. Ec. Norm. Sup. 42(4), 559-600 (2009) · Zbl 1192.37051
[8] Buzzi, J.: Entropies et représentations markoviennes des applications régulières de l’intervalle. PhD thesis, Orsay (1995) · Zbl 0227.28014
[9] Buzzi, J.: Intrinsic ergodicity of smooth interval maps. Israel J. Math. 100, 125-161 (1997) · Zbl 0889.28009 · doi:10.1007/BF02773637
[10] Buzzi, J.: Markov extensions for multi-dimensional dynamical systems. Israel J. Math. 112, 357-380 (1999) · Zbl 0988.37012 · doi:10.1007/BF02773488
[11] Dajani, K., Kraaikamp, C.: Random \[\beta\] β-expansions. Ergodic Theory Dyn. Syst. 23(2), 461-479 (2003) · Zbl 1035.37006 · doi:10.1017/S0143385702001141
[12] Dajani, K., Hawkins, J.: Rohlin factors, product factors, and joinings for \[n\] n-to-one maps. Indiana Univ. Math. J. 42(1), 237-258 (1993) · Zbl 0805.28010 · doi:10.1512/iumj.1993.42.42012
[13] Dajani, K., Kalle, C.: A natural extension for the greedy \[\beta\] β-transformation with three arbitrary digits. Acta Math. Hungar 125(1-2), 21-45 (2009) · Zbl 1212.37001
[14] Dajani, K., Kraaikamp, C., Solomyak, B.: The natural extension of the \[\beta\] β-transformation. Acta Math. Hungar. 73(1-2), 97-109 (1996) · Zbl 0931.28014 · doi:10.1007/BF00058946
[15] Frougny, C., Lai, A.C.: On Negative Bases. In: Developments in Language Theory, Lecture Notes in Comput. Sci., vol. 5583, pp. 252-263. Springer, Berlin (2009) · Zbl 1247.68139
[16] Gurevič, B.M.: Topological entropy of a countable Markov chain. Dokl. Akad. Nauk SSSR 187, 715-718 (1969) · Zbl 0194.49602
[17] Heicklen, D., Hoffman, C.: Rational maps are \[d\] d-adic Bernoulli. Ann. Math. (2) 156(1), 103-114 (2002) · Zbl 1017.37020 · doi:10.2307/3597185
[18] Hofbauer, F.: On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. Israel J. Math. 34(3), 213-237 (1980) · Zbl 0422.28015 · doi:10.1007/BF02760884
[19] Hofbauer, F.: The topological entropy of the transformation \[x\mapsto ax(1-x)\] x↦ax(1-x). Monatsh. Math. 90(2), 117-141 (1980) · Zbl 0433.54009 · doi:10.1007/BF01303262
[20] Hofbauer, F., Raith, P.: Topologically transitive subsets of piecewise monotonic maps which contain no periodic points. Monatsh. Math. 107(3), 217-239 (1989) · Zbl 0676.54049 · doi:10.1007/BF01300345
[21] Hoffman, C., Rudolph, D.: Uniform endomorphisms which are isomorphic to a Bernoulli shift. Ann. Math. (2) 156(1), 79-101 (2002) · Zbl 1017.37005 · doi:10.2307/3597184
[22] Itō, K.: Encyclopedic Dictionary of Mathematics, vol. I-IV. MIT Press, Cambridge (1987) · Zbl 0674.00025
[23] Ito, S., Rao, H.: Atomic surfaces, tilings and coincidence. I. Irreducible case. Israel J. Math. 153, 129-155 (2006) · Zbl 1143.37013 · doi:10.1007/BF02771781
[24] Jager, H.: The distribution of certain sequences connected with the continued fraction. Nederl. Akad. Wetensch. Indag. Math. 48(1), 61-69 (1986) · Zbl 0588.10061 · doi:10.1016/1385-7258(86)90006-5
[25] Jager, H., Kraaikamp, C.: On the approximation by continued fractions. Nederl. Akad. Wetensch. Indag. Math. 51(3), 289-307 (1989) · Zbl 0695.10029 · doi:10.1016/S1385-7258(89)80004-6
[26] Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995) · Zbl 0878.58020 · doi:10.1017/CBO9780511809187
[27] Keller, G.: Lifting measures to Markov extensions. Monatsh. Math. 108(2-3), 183-200 (1989) · Zbl 0712.28008 · doi:10.1007/BF01308670
[28] Keller, G.: Exponents, attractors and Hopf decompositions for interval maps. Ergodic Theory Dyn. Syst. 10, 717-744 (1990) · Zbl 0715.58020 · doi:10.1017/S0143385700005861
[29] Koss, L.: Ergodic and Bernoulli properties of analytic maps of complex projective space. Trans. Am. Math. Soc. 354(6), 2417-2459 (2002) · Zbl 1038.37006 · doi:10.1090/S0002-9947-02-02725-3
[30] Kowalski, Z.: Minimal generators for ergodic endomorphisms. Studia Math. 91(2), 85-88 (1988) · Zbl 0676.28009
[31] Keane, M., Smorodinsky, M.: Finitary isomorphisms of irreducible Markov shifts. Israel J. Math. 34(4), 281-286 (1980) · Zbl 0431.28015 · doi:10.1007/BF02760609
[32] Kalle, C., Steiner, W.: Beta-expansions, natural extensions and multiple tilings. Trans. Am. Math. Soc. 364(5), 2281-2318 (2012) · Zbl 1295.11010 · doi:10.1090/S0002-9947-2012-05362-1
[33] Kraaikamp, C., Schmidt, T., Steiner, W.: Natural extensions and entropy of \[\alpha\] α-continued fractsions. Nonlinearity 25(8), 2207-2243 (2012) · Zbl 1333.11079 · doi:10.1088/0951-7715/25/8/2207
[34] Lyubich, M.J.: Entropy properties of rational endomorphisms of the Riemann sphere. Ergodic Theory Dyn. Syst. 3(3), 351-385 (1983) · Zbl 0537.58035
[35] Liao, L., Steiner, W.: Dynamical properties of the negative beta-transformation. Ergodic Theory Dyn. Syst. 32(5), 1673-1690 (2012) · Zbl 1266.37017 · doi:10.1017/S0143385711000514
[36] Mañé, R.: On the uniqueness of the maximizing measure for rational maps. Bol. Soc. Brasil. Mat. 14(1), 27-43 (1983) · Zbl 0568.58028
[37] Mañé, R.: On the Bernoulli property for rational maps. Ergodic Theory Dyn. Syst. 5(1), 71-88 (1985) · Zbl 0605.28011
[38] de Melo, W., van Strien, S.: One Dimensional Dynamics. Ergebnisse Series 25, Springer, Berlin (1993) · Zbl 0791.58003
[39] Ornstein, D.: Two Bernoulli shifts with infinite entropy are isomorphic. Adv. Math. 5, 339-348 (1970) · Zbl 0227.28014 · doi:10.1016/0001-8708(70)90008-3
[40] Ornstein, D.: Some new results in the Kolmogorov-Sinai theory of entropy and ergodic theory. Bull. Am. Math. Soc. 77, 878-890 (1971) · Zbl 0269.60032 · doi:10.1090/S0002-9904-1971-12803-3
[41] Parry, W.: Entropy and Generators in Ergodic Theory. W. A. Benjamin Inc, New York, Amsterdam (1969) · Zbl 0175.34001
[42] Pesin, Y., Senti, S., Zhang, K.: Lifting measures to inducing schemes. Ergodic Theory Dyn. Syst. 28(2):553-574 (2008) · Zbl 1154.37302
[43] Rohlin, V.A.: Exact endomorphism of a Lebesgue space. Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 14, 443-474 (1964) · Zbl 0126.31803
[44] Rychlik, M.: Bounded variation and invariant measures. Studia Math. 76(1), 69-80 (1983) · Zbl 0575.28011
[45] Saleski, A.: On induced transformations of Bernoulli shifts. Math. Syst. Theory 7, 83-96 (1973) · Zbl 0256.28012 · doi:10.1007/BF01824810
[46] Schmidt, K.: On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc. 12(4), 269-278 (1980) · Zbl 0494.10040 · doi:10.1112/blms/12.4.269
[47] Schweiger, F.: Invariant measures for maps of continued fraction type. J. Number Theory 39(2), 162-174 (1991) · Zbl 0748.11037 · doi:10.1016/0022-314X(91)90042-A
[48] Schmidt, K.: Algebraic coding of expansive group automorphisms and two-sided beta-shifts. Monatsh. Math. 129(1), 37-61 (2000) · Zbl 1010.37005 · doi:10.1007/s006050050005
[49] Smorodinsky, M.: On Ornstein’s isomorphism theorem for Bernoulli shifts. Adv. Math. 9, 1-9 (1972) · Zbl 0238.28010 · doi:10.1016/0001-8708(72)90027-8
[50] Tsujii, M.: Absolutely continuous invariant measures for expanding linear maps. Invent. Math. 143(2), 349-373 (2001) · Zbl 0969.37012 · doi:10.1007/PL00005797
[51] Walters, P.: An Introduction to Ergodic Theory. Springer, New York (1982) · Zbl 0475.28009 · doi:10.1007/978-1-4612-5775-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.