×

The road to deterministic matrices with the restricted isometry property. (English) Zbl 1306.15031

Summary: The restricted isometry property (RIP) is a well-known matrix condition that provides state-of-the-art reconstruction guarantees for compressed sensing. While random matrices are known to satisfy this property with high probability, deterministic constructions have found less success. In this paper, we consider various techniques for demonstrating RIP deterministically, some popular and some novel, and we evaluate their performance. In evaluating some techniques, we apply random matrix theory and inadvertently find a simple alternative proof that certain random matrices are RIP. Later, we propose a particular class of matrices as candidates for being RIP, namely, equiangular tight frames (ETFs). Using the known correspondence between real ETFs and strongly regular graphs, we investigate certain combinatorial implications of a real ETF being RIP. Specifically, we give probabilistic intuition for a new bound on the clique number of Paley graphs of prime order, and we conjecture that the corresponding ETFs are RIP in a manner similar to random matrices.

MSC:

15B52 Random matrices (algebraic aspects)
15A42 Inequalities involving eigenvalues and eigenvectors
05E30 Association schemes, strongly regular graphs
60B20 Random matrices (probabilistic aspects)
60F10 Large deviations
94A12 Signal theory (characterization, reconstruction, filtering, etc.)

References:

[1] Alexeev, B., Cahill, J., Mixon, D.G.: Full spark frames. J. Fourier Anal. Appl. 18(6), 1167-1194 (2012) · Zbl 1257.42040 · doi:10.1007/s00041-012-9235-4
[2] Alon, N., Naor, A.: Approximating the cut-norm via Grothendieck’s inequality. SIAM J. Comput. 35, 787-803 (2006) · Zbl 1096.68163 · doi:10.1137/S0097539704441629
[3] Applebaum, L., Howard, S.D., Searle, S., Calderbank, R.: Chirp sensing codes: deterministic compressed sensing measurements for fast recovery. Appl. Comput. Harmon. Anal. 26, 283-290 (2009) · Zbl 1156.94305 · doi:10.1016/j.acha.2008.08.002
[4] Bandeira, A.S., Dobriban, E., Mixon, D.G., Sawin, W.F.: Certifying the restricted isometry property is hard. IEEE Trans. Inf. Theory 59, 3448-3450 (2013) · Zbl 1364.94109 · doi:10.1109/TIT.2013.2248414
[5] Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28, 253-263 (2008) · Zbl 1177.15015 · doi:10.1007/s00365-007-9003-x
[6] Bernstein, S.N.: Theory of Probability, 4th edn. Gostechizdat, Moscow-Leningrad (1946)
[7] Bollobás, B.: Random Graphs, 2nd edn. Cambridge Univ. Press, Cambridge (2001) · Zbl 0979.05003 · doi:10.1017/CBO9780511814068
[8] Bourgain, J., Dilworth, S., Ford, K., Konyagin, S., Kutzarova, D.: Explicit constructions of RIP matrices and related problems. Duke Math. J. 159, 145-185 (2011) · Zbl 1236.94027 · doi:10.1215/00127094-1384809
[9] Candès, E.J.: The restricted isometry property and its implications for compressed sensing. C. R. Acad. Sci. Paris, Ser. I 346, 589-592 (2008) · Zbl 1153.94002 · doi:10.1016/j.crma.2008.03.014
[10] Candès, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 44, 4203-4215 (2005) · Zbl 1264.94121 · doi:10.1109/TIT.2005.858979
[11] Candès, E.J., Tao, T.: The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat. 35, 2313-2351 (2007) · Zbl 1139.62019 · doi:10.1214/009053606000001523
[12] Chung, F.R.K., Graham, R.L., Wilson, R.M.: Quasi-random graphs. Combinatorica 9, 345-362 (1989) · Zbl 0715.05057 · doi:10.1007/BF02125347
[13] Cohen, S.D.: Clique numbers of Paley graphs. Quaest. Math. 11, 225-231 (1988) · Zbl 0691.05051 · doi:10.1080/16073606.1988.9631955
[14] Davidson, K. R.; Szarek, S. J.; Johnson, W. B. (ed.); Lindenstrauss, J. (ed.), Local operator theory, random matrices and Banach spaces, 317-366 (2001), Amsterdam · Zbl 1067.46008 · doi:10.1016/S1874-5849(01)80010-3
[15] DeVore, R.A.: Deterministic constructions of compressed sensing matrices. J. Complex. 23, 918-925 (2007) · Zbl 1134.94312 · doi:10.1016/j.jco.2007.04.002
[16] Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization. Proc. Natl. Acad. Sci. USA 100, 2197-2202 (2003) · Zbl 1064.94011 · doi:10.1073/pnas.0437847100
[17] Fickus, M., Mixon, D.G., Tremain, J.C.: Steiner equiangular tight frames. Linear Algebra Appl. 436, 1014-1027 (2012) · Zbl 1252.42032 · doi:10.1016/j.laa.2011.06.027
[18] Gerschgorin, S.: Über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk. USSR Otd. Fiz.-Mat. 7, 749-754 (1931) · Zbl 0003.00102
[19] Graham, S.W., Ringrose, C.J.: Lower bounds for least quadratic non-residues. Prog. Math. 85, 269-309 (1990) · Zbl 0719.11006
[20] Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Am. Math. Soc. 43, 439-561 (2006) · Zbl 1147.68608 · doi:10.1090/S0273-0979-06-01126-8
[21] Laurent, B., Massart, P.: Adaptive estimation of a quadratic functional by model selection. Ann. Stat. 28, 1302-1338 (2000) · Zbl 1105.62328 · doi:10.1214/aos/1015957395
[22] Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24, 227-234 (1995) · Zbl 0827.68054 · doi:10.1137/S0097539792240406
[23] Peralta, R.: On the distribution of quadratic residues and nonresidues modulo a prime number. Math. Comput. 58, 433-440 (1992) · Zbl 0745.11057 · doi:10.1090/S0025-5718-1992-1106978-9
[24] Rauhut, H.: Stability results for random sampling of sparse trigonometric polynomials. IEEE Trans. Inf. Theory 54, 5661-5670 (2008) · Zbl 1247.94010 · doi:10.1109/TIT.2008.2006382
[25] Renes, J.M.: Equiangular tight frames from Paley tournaments. Linear Algebra Appl. 426, 497-501 (2007) · Zbl 1127.05019 · doi:10.1016/j.laa.2007.05.029
[26] Rudelson, M., Vershynin, R.: On sparse reconstruction from Fourier and Gaussian measurements. Commun. Pure Appl. Math. 61, 1025-1045 (2008) · Zbl 1149.94010 · doi:10.1002/cpa.20227
[27] Sachs, H.: Über selbstkomplementäre Graphen. Publ. Math. (Debr.) 9, 270-288 (1962) · Zbl 0119.18904
[28] Seidel, J. J., A survey of two-graphs, 481-511 (1973) · Zbl 0352.05016
[29] Stevenhagen, P., Lenstra, H.W.: Chebotarëv and his density theorem. Math. Intell. 18, 26-37 (1996) · Zbl 0885.11005 · doi:10.1007/BF03027290
[30] Strohmer, T., Heath, R.W.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14, 257-275 (2003) · Zbl 1028.42020 · doi:10.1016/S1063-5203(03)00023-X
[31] Tao, T.: Open question: deterministic UUP matrices. http://terrytao.wordpress.com/2007/07/02/open-question-deterministic-uup-matrices · Zbl 1134.94312
[32] Temlyakov, V.: Greedy Approximations. Cambridge University Press, Cambridge (2011) · Zbl 1279.41001 · doi:10.1017/CBO9780511762291
[33] van Lint, J.H., Seidel, J.J.: Equilateral point sets in elliptic geometry. Nederl. Akad. Wetensch. Proc. Ser. A 69, 335-348 (1966). Indag. Math. 28 · Zbl 0138.41702
[34] Waldron, S.: On the construction of equiangular frames from graphs. Linear Algebra Appl. 431, 2228-2242 (2009) · Zbl 1216.05079 · doi:10.1016/j.laa.2009.07.016
[35] Welch, L.R.: Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inf. Theory 20, 397-399 (1974) · Zbl 0298.94006 · doi:10.1109/TIT.1974.1055219
[36] Xia, P., Zhou, S., Giannakis, G.B.: Achieving the Welch bound with difference sets. IEEE Trans. Inf. Theory 51, 1900-1907 (2005) · Zbl 1237.94007 · doi:10.1109/TIT.2005.846411
[37] Yurinskii, V.V.: Exponential inequalities for sums of random vectors. J. Multivar. Anal. 6, 473-499 (1976) · Zbl 0346.60001 · doi:10.1016/0047-259X(76)90001-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.