×

Autocalibration of electrodiffusion friction probes in microdispersion liquids. (English) Zbl 1305.76101

Summary: Voltage-step transient problem, useful in electrodiffusion diagnostics of the near-to-wall flow kinematics, is solved for microdispersion liquids that manifest nonlinear velocity profile close to the wall. The known solution of this problem for circular probes in a diffusion-layer approximation (DLA), assuming a power-law representation of the velocity profiles, Wein and Kovalevskaya, is corrected on the edge effects, important at low Peclet number, i.e. for the small probes and slow flows. A model of the transient process, controlled by convective diffusion at finite Peclet number, is developed here as a generalization of the approach by Wein et al. The model is applied for treating primary voltage-step transient data of several aqueous high-molecular polysaccharide solutions, displaying strongly nonlinear velocity profiles close to the wall.

MSC:

76R50 Diffusion
76T20 Suspensions
78A57 Electrochemistry
Full Text: DOI

References:

[1] Selman, J. R.; Tobias, Ch.W.: Mass-transfer measurements by the limiting-current technique, Advances in chemical engineering 10, 211-318 (1978)
[2] Hanratty, T. J.; Campbell, J. A.: Measurement of wall shear stress, Fluid mechanics measurements (1996)
[3] V.E. Nakoryakov, A.P. Burdukov, O.N. Kashinskii, P.I. Geshev, Electrodiffusion method of studying the structure of turbulent flows, (Russ). Institute of Thermophysics SO AN SSSR, Novosibirsk, 1986.
[4] N.A. Pokryvaylo, O. Wein, N.D. Kovalevskaya, Electrodiffusion Diagnostics of Flows in Suspensions and Polymer Solutions, (Russ), Nauka i Tekhnika, Minsk, 1988.
[5] Wein, O.: Theory of EDF probes in microdisperse liquids. 1. Diffusion layer approximation (Russ), Zh. prikl. Mekh. i. Tekhn. fiz., No. 5, 123-126 (1991)
[6] O.Wein, M. Vecer, V.V. Tovcigrecko, V. Sobolik, Electrodiffusion flow diagnostics for liquids displaying apparent wall slip, in: Proceedings of 16th International Congress CHISA, Prague, 2004.
[7] O. Wein, Convective diffusion from convex microprobes into colloidal suspensions: the edge effects, Int. J. Heat Mass Transfer (2010), doi:10.1016/j.ijheatmasstransfer.2010.01.002. · Zbl 1305.76100
[8] Sobolik, V.; Tihon, J.; Wein, O.; Wichterle, K.: Calibration of electrodiffusion friction probes using a voltage-step transient, J. appl. Electrochem. 28, 329-335 (1998)
[9] Wein, O.; Tovchigrechko, V. V.; Sobolik, V.: Transient convective diffusion to a circular sink at finite Péclet number, Int. J. Heat mass transfer 49, 4596-4607 (2006) · Zbl 1121.76517 · doi:10.1016/j.ijheatmasstransfer.2006.05.002
[10] Wein, O.: On the transient leveque problem with an application in electrochemistry, Collect. Czech chem. Commun. 46, 3209-3220 (1981)
[11] Wein, O.; Kovalevskaya, N. D.: Transient convective diffusion on a convex electrode in the presence of anomalous wall effects, Collect. Czech chem. Commun. 49, 1297-1303 (1984)
[12] Wein, O.; Sobolík, V.: Dynamics of electrodiffusion friction probes. I. shape-dependent potentiostatic transient, Collect. Czech chem. Commun. 62, 397-419 (1997)
[13] Wein, O.; Sobolík, V.; Tihon, J.: Dynamics of electrodiffusion friction probes. II. shape-dependent impedance, Collect. Czech chem. Commun. 62, 420-441 (1997)
[14] Ruckenstein, E.: Some unsteady heat transfer problems solved by a simple similarity transformation, Chem. eng. Commun. 84, 159-172 (1989)
[15] Hudson, J. L.; Bankoff, S. G.: An exact solution of unsteady heat transfer to a shear flow, Chem. eng. Sci. 19, 591-598 (1964)
[16] Soliman, M.; Chambré, P. L.: On the time-dependent leveque problem, Int. J. Heat mass transfer 10, 169-180 (1967) · Zbl 0148.22101 · doi:10.1016/0017-9310(67)90096-8
[17] Macdonald, D. D.: Transient techniques in electrochemistry, (1977)
[18] Wein, O.: Effect of ohmic losses on potentiostatic transient response of reversible redox system, J. appl. Electrochem. 21, 1091-1094 (1991)
[19] Wein, O.: Voltage-step transient process at large overpotential, (Russ), Elektrokhimyia 29, 8-10 (1993)
[20] Wein, O.; Assaf, F. H.: Potentiostatic transient diffusion to solid electrodes with rough surfaces, Collect. Czech chem. Commun. 52, 848-866 (1987)
[21] Oldham, K. B.: Edge effects in semi-infinite diffusion, J. electroanal. Chem. 122, 1-17 (1981)
[22] Aoki, K.; Osteryoung, J.: Diffusion-controlled current at the stationary finite disk electrode, J. electroanal. Chem. 122, 19-35 (1981)
[23] Wein, O.; Večeř, M.; Tovčigrečko, V. V.: AWS rotational viscometry of polysaccharide solutions using a novel KK sensor, J. non-Newtonian fluid mech. 139, 135-152 (2006)
[24] O. Wein, V.V. Tovčigrečko, V. Sobolík, M. Večeř, Diagnostics of apparent wall slip in aqueous polymer solutions, in: M. Zatloukal (Ed.), Novel Trends in Rheology, Zlin 2009, AIP Conference Proceedings, vol. 1152, N.Y., 2009.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.