×

Fast enclosure for a matrix inverse square root. (English) Zbl 1305.65133

Summary: A fast algorithm for computing an interval matrix containing the inverse square root of an \(n \times n\) matrix \(A\) is proposed. This algorithm utilizes numerical spectral decomposition of \(A\) and requires only \(\mathcal{O}(n^3)\) operations. The principal property and uniqueness of the contained inverse square root can moreover be verified by the proposed algorithm. Numerical results show the effectiveness and efficiency of this algorithm.

MSC:

65F30 Other matrix algorithms (MSC2010)
65G30 Interval and finite arithmetic
65F05 Direct numerical methods for linear systems and matrix inversion
65G20 Algorithms with automatic result verification

Software:

mftoolbox; INTLAB
Full Text: DOI

References:

[1] Sherif, N., On the computation of a matrix inverse square root, Computing, 46, 295-305 (1991) · Zbl 0741.65039
[2] Laasonen, P., On the iterative solution of the matrix equation \(A X^2 - I = 0\), Math. Tables Other Aids Comput., 12, 109-116 (1958) · Zbl 0083.11704
[3] Boriçi, A., A Lanczos approach to the inverse square root of a large and sparse matrix, J. Comput. Phys., 162, 123-131 (2000) · Zbl 0960.65048
[4] Guo, C. H.; Higham, N. J., A Schur-Newton method for the matrix \(p\) th root and its inverse, SIAM J. Matrix Anal. Appl., 28, 788-804 (2006) · Zbl 1128.65030
[5] Lakić, S., A one parameter method for the matrix inverse square root, Appl. Math., 42, 6, 401-410 (1997) · Zbl 0938.65072
[6] Higham, N. J., Functions of Matrices: Theory and Computation (2008), SIAM: SIAM Philadelphia · Zbl 1167.15001
[7] Iannazzo, B.; Meini, B., Palindromic matrix polynomials, matrix functions and integral representations, Linear Algebra Appl., 434, 174-184 (2011) · Zbl 1211.15027
[8] Frommer, A.; Hashemi, B.; Sablik, T., Computing enclosures for the inverse square root and the sign function of a matrix, Linear Algebra Appl., 456, 199-213 (2014) · Zbl 1293.65071
[9] Krawczyk, R., Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken, Computing, 4, 187-201 (1969) · Zbl 0187.10001
[10] Golub, G. H.; Van Loan, C. F., Matrix Computations (1996), Johns Hopkins University Press: Johns Hopkins University Press Baltimore, London · Zbl 0865.65009
[11] Horn, R. A.; Johnson, C. R., Topics in Matrix Analysis (1994), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0801.15001
[13] Miyajima, S., Fast enclosure for all eigenvalues and invariant subspaces in generalized eigenvalue problems, SIAM J. Matrix Anal. Appl., 35, 1205-1225 (2014) · Zbl 1307.65044
[14] Arndt, H., On the interval systems \([x] = [A] [x] + [b]\) and the powers of interval matrices in complex interval arithmetics, Reliab. Comput., 13, 245-259 (2007) · Zbl 1115.65033
[15] Rump, S. M., INTLAB - INTerval LABoratory, (Csendes, T., Developments in Reliable Computing (1999), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 77-104 · Zbl 0949.65046
[16] Miyajima, S., Fast enclosure for solutions of Sylvester equations, Linear Algebra Appl., 439, 856-878 (2013) · Zbl 1281.65069
[17] Bavely, A.; Stewart, G., An algorithm for computing reducing subspaces by block diagonalization, SIAM J. Numer. Anal., 16, 359-367 (1979) · Zbl 0413.65034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.