×

On maximum likelihood estimation of a Pareto mixture. (English) Zbl 1305.65024

Summary: In this paper we deal with maximum likelihood estimation (MLE) of the parameters of a Pareto mixture. Standard MLE procedures are difficult to apply in this setup, because the distributions of the observations do not have common support. We study the properties of the estimators under different hypotheses; in particular, we show that, when all the parameters are unknown, the estimators can be found maximizing the profile likelihood function. Then we turn to the computational aspects of the problem, and develop three alternative procedures: an EM-type algorithm, a Simulated Annealing and an algorithm based on Cross-Entropy minimization. The work is motivated by an application in the operational risk measurement field: we fit a Pareto mixture to operational losses recorded by a bank in two different business lines. Under the assumption that each population follows a Pareto distribution, the appropriate model is a mixture of Pareto distributions where all the parameters have to be estimated.

MSC:

62-08 Computational methods for problems pertaining to statistics

Software:

R; QRM
Full Text: DOI

References:

[1] Ahmad K (1988) Identifiability of finite mixtures using a new transform. Ann Inst Stat Math 40: 261–265 · Zbl 0668.62011 · doi:10.1007/BF00052342
[2] Atienza N, Garcia-Heras J, Munoz-Pichardo J, Villa R (2007) On the consistency of MLE in finite mixture models of exponential families. J Stat Plan Inference 137: 496–505 · Zbl 1102.62020 · doi:10.1016/j.jspi.2005.12.014
[3] Brooks S, Morgan B (1995) Optimization using simulated annealing. Statistician 44: 241–257 · doi:10.2307/2348448
[4] Casella G, Robert C (2004) Monte Carlo statistical methods, 2nd edn. Springer, NewYork · Zbl 1096.62003
[5] Dempster N, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm (with discussion). J R Stat Soc B 39: 1–38 · Zbl 0364.62022
[6] Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6: 721–741 · Zbl 0573.62030 · doi:10.1109/TPAMI.1984.4767596
[7] Ingrassia S (1992) A comparison between the simulated annealing and the EM algorithms in normal mixture decompositions. Stat Comput 2: 203–211 · doi:10.1007/BF01889680
[8] Johnson D, Aragon C, McGeoch L, Schevon C (1989) Optimization by simulated annealing: an experimental evaluation, part I, graph partitioning. Oper Res 37: 865–892 · Zbl 0698.90065 · doi:10.1287/opre.37.6.865
[9] Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science 220: 671–680 · Zbl 1225.90162 · doi:10.1126/science.220.4598.671
[10] Kleiber C., Kotz S (2003) Statistical size distributions in economics and actuarial sciences. Wiley, New York · Zbl 1044.62014
[11] Kroese D, Porotsky S, Rubinstein R (2006) The cross-entropy method for continuous multi-extremal optimization. Methodol Comput Appl Probab 8: 383–407 · Zbl 1107.65049 · doi:10.1007/s11009-006-9753-0
[12] Lehmann EL, Casella G (1998) Theory of point estimation, 2nd edn. Springer, NewYork · Zbl 0916.62017
[13] Little R, Rubin D (1987) Statistical analysis with missing data. Wiley, Hoboken · Zbl 0665.62004
[14] McLachlan G, Krishnan T (1996) The EM algorithm and extensions. Wiley, Hoboken · Zbl 0882.62012
[15] McLachlan G, Peel D (2000) Finite mixture models. Wiley, NewYork · Zbl 0963.62061
[16] McNeil A, Frey R, Embrechts P (2005) Quantitative risk management: concepts, techniques, tools. Princeton University Press, Princeton · Zbl 1089.91037
[17] Metropolis N, Rosenbluth A, Rosenbluth N, Teller A, Teller E (1953) Equations of state calculations by fast computing machines. J Chem Phys 21: 1087–1092 · doi:10.1063/1.1699114
[18] Nadarajah S (2006) Information matrices for Laplace and Pareto mixtures. Comput Stat Data Anal 50: 950–966 · Zbl 1379.62003 · doi:10.1016/j.csda.2004.11.010
[19] Pareto V (1895) La legge della domanda. Giornale degli Economisti 10: 59–68
[20] Pearson K (1894) Contribution to the mathematical theory of evolution. Philos Trans R Soc A 185: 71–110 · JFM 25.0347.02 · doi:10.1098/rsta.1894.0003
[21] Pincus M (1968) A closed form solution of certain programming problems. Oper Res 16: 690–694 · Zbl 0208.22001 · doi:10.1287/opre.16.3.690
[22] Pincus M (1970) A Monte Carlo method for the approximate solution of certain types of constrained optimization problems. Oper Res 18: 1225–1228 · Zbl 0232.90063 · doi:10.1287/opre.18.6.1225
[23] R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0
[24] Redner R, Walker H (1984) Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev 26: 195–239 · Zbl 0536.62021 · doi:10.1137/1026034
[25] Rubinstein R (1997) Optimization of computer simulation models with rare events. Eur J Oper Res 99: 89–112 · Zbl 0923.90051 · doi:10.1016/S0377-2217(96)00385-2
[26] Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodol Comput Appl Probab 2: 127–190 · Zbl 0941.65061 · doi:10.1023/A:1010091220143
[27] Rubinstein R, Kroese D (2004) The cross-entropy method. Springer, NewYork · Zbl 1061.90032
[28] Sankaran P, Nair MT (2005) On a finite mixture of Pareto distributions. Calcutta Stat Assoc Bull 57: 67–83 · Zbl 1170.62315
[29] Severini T (2000) Likelihood methods in statistics. Oxford University Press, Oxford · Zbl 0984.62002
[30] Titterington D, Smith A, Makov U (1985) Statistical analysis of finite mixture distributions. Wiley, NewYork · Zbl 0646.62013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.