×

Spectral analysis of Markov kernels and application to the convergence rate of discrete random walks. (English) Zbl 1305.60060

Summary: Let \(\{X_n\}_{n\in \mathbb{N}}\) be a Markov chain on a measurable space \(\mathbb{X}\) with transition kernel \(P\) and let \(V:\mathbb{X} \to [1, +\infty)\). The Markov kernel \(P\) is here considered as a linear bounded operator on the weighted-supremum space \(\mathcal{B}_V\) associated with \(V\). Then the combination of quasicompactness arguments with precise analysis of the eigenelements of \(P\) allows us to estimate the geometric rate of convergence \(\rho_V(P)\) of \(\{X_n\}_{n\in \mathbb{N}}\) to its invariant probability measure in the operator norm on \(\mathcal{B}_V\). A general procedure to compute \(\rho_V(P)\) for discrete Markov random walks with identically distributed bounded increments is specified.

MSC:

60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
47B07 Linear operators defined by compactness properties

References:

[1] Baxendale, P. H. (2005). Renewal theory and computable convergence rates for geometrically ergodic Markov chains. Ann. Appl. Prob. 15 , 700-738. · Zbl 1070.60061 · doi:10.1214/105051604000000710
[2] Guibourg, D., Hervé, L. and Ledoux, J. (2011). Quasi-compactness of Markov kernels on weighted-supremum spaces and geometrical ergodicity. Preprint. Available at http://uk.arxiv.org/abs/1110.3240.
[3] Hennion, H. (1993). Sur un théorème spectral et son application aux noyaux lipchitziens. Proc. Amer. Math. Soc. 118 , 627-634. · Zbl 0772.60049 · doi:10.2307/2160348
[4] Hervé, L. and Ledoux, J. (2014). Approximating Markov chains and \({V}\)-geometric ergodicity via weak perturbation theory. Stoch. Process. Appl. 124 , 613-638. · Zbl 1305.60059 · doi:10.1016/j.spa.2013.09.003
[5] Hordijk, A. and Spieksma, F. (1992). On ergodicity and recurrence properties of a Markov chain with an application to an open Jackson network. Adv. Appl. Prob. 24 , 343-376. · Zbl 0766.60085 · doi:10.2307/1427696
[6] Klimenok, V. and Dudin, A. (2006). Multi-dimensional asymptotically quasi-Toeplitz Markov chains and their application in queueing theory. Queueing Systems. 54 , 245-259. · Zbl 1107.60060 · doi:10.1007/s11134-006-0300-z
[7] Kontoyiannis, I. and Meyn, S. P. (2003). Spectral theory and limit theorems for geometrically ergodic Markov processes. Ann. Appl. Prob. 13 , 304-362. · Zbl 1016.60066 · doi:10.1214/aoap/1042765670
[8] Kontoyiannis, I. and Meyn, S. P. (2012). Geometric ergodicity and the spectral gap of non-reversible Markov chains. Prob. Theory Relat. Fields 154 , 327-339. · Zbl 1263.60064 · doi:10.1007/s00440-011-0373-4
[9] Kovchegov, Y. (2009). Orthogonality and probability: beyond nearest neighbor transitions. Electron. Commun. Prob. 14 , 90-103. · Zbl 1189.60075 · doi:10.1214/ECP.v14-1447
[10] Lund, R. B. and Tweedie, R. L. (1996). Geometric convergence rates for stochastically ordered Markov chains. Math. Operat. Res. 21 , 182-194. · Zbl 0847.60053 · doi:10.1287/moor.21.1.182
[11] Malyshev, V. A. and Spieksma, F. M. (1995). Intrinsic convergence rate of countable Markov chains. Markov Process. Relat. Fields 1 , 203-266. · Zbl 0901.60037
[12] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability . Springer, London. · Zbl 0925.60001
[13] Meyn, S. P. and Tweedie, R. L. (1994). Computable bounds for geometric convergence rates of Markov chains. Ann. Appl. Prob. 4 , 981-1011. · Zbl 0812.60059 · doi:10.1214/aoap/1177004900
[14] Roberts, G. O. and Tweedie, R. L. (1999). Bounds on regeneration times and convergence rates for Markov chains. Stoch. Process. Appl. 80 , 211-229. (Corrigendum: 91 (2001), 337-338.) · Zbl 0961.60066 · doi:10.1016/S0304-4149(98)00085-4
[15] Rosenthal, J. S. (1996). Markov chain convergence: from finite to infinite. Stoch. Process. Appl. 62 , 55-72. · Zbl 0849.60071 · doi:10.1016/0304-4149(95)00082-8
[16] Van Doorn, E. A. and Schrijner, P. (1995). Geometric ergodicity and quasi-stationarity in discrete-time birth-death processes. J. Austral. Math. Soc. B 37 , 121-144. · Zbl 0856.60080 · doi:10.1017/S0334270000007621
[17] Wu, L. (2004). Essential spectral radius for Markov semigroups. I. Discrete time case. Prob. Theory Relat. Fields 128 , 255-321. · Zbl 1056.60068 · doi:10.1007/s00440-003-0304-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.