×

A mathematical analogy and a unified asymptotic formulation for singular elastic and electromagnetic fields at multimaterial wedges. (English) Zbl 1304.74026

Summary: In the present contribution, the mathematical analogy existing between the singular stress field in elasticity due to antiplane loading and the singular electromagnetic fields in electromagnetism is derived with reference to the problem of isotropic multimaterial wedges. These configurations, where dissimilar sectors converge to the same vertex, are commonly observed in composite materials and may lead to singularities. The proposed analogy permits to extend several elastic solutions for the power of the stress-singularity already available in the elasticity literature to the analogous electromagnetic problems and viceversa. Finally, electromagnetic structures that cannot be treated according to the proposed analogy, such as those related to bi-isotropic multimaterial wedges, are discussed.

MSC:

74F15 Electromagnetic effects in solid mechanics
74B05 Classical linear elasticity
74G70 Stress concentrations, singularities in solid mechanics
74G10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics
Full Text: DOI

References:

[1] England, A.H.: On stress singularities in linear elasticity. Int. J. Eng. Sci. 9, 571–585 (1971) · Zbl 0219.73005 · doi:10.1016/0020-7225(71)90039-5
[2] Sinclair, G.B.: Stress singularities in classical elasticity–I: removal, interpretation, and analysis. Appl. Mech. Rev. 57, 251–297 (2004) · doi:10.1115/1.1762503
[3] Sinclair, G.B.: Stress singularities in classical elasticity–II: asymptotic identification. Appl. Mech. Rev. 57, 385–439 (2004) · doi:10.1115/1.1767846
[4] Paggi, M., Carpinteri, A.: On the stress singularities at multimaterial interfaces and related analogies with fluid dynamics and diffusion. Appl. Mech. Rev. 61, 1–22 (2008) · Zbl 1146.74325 · doi:10.1115/1.2885134
[5] Bogy, D.B.: Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions. ASME J. Appl. Mech. 38, 377–386 (1971) · doi:10.1115/1.3408786
[6] Hein, V.L., Erdogan, F.: Stress singularities in a two-material wedge. Int. J. Fract. Mech. 7, 317–330 (1971)
[7] Bogy, D.B., Wang, K.C.: Stress singularities at interface corners in bonded dissimilar isotropic elastic materials. Int. J. Solids Struct. 7, 993–1005 (1971) · Zbl 0236.73020 · doi:10.1016/0020-7683(71)90077-1
[8] Theocaris, P.S.: The order of singularity at a multi-wedge corner of a composite plate. Int. J. Eng. Sci. 12, 107–120 (1974) · Zbl 0272.73038 · doi:10.1016/0020-7225(74)90011-1
[9] Pageau, S.S., Joseph, P.F., Biggers, S.B., Jr.: The order of stress singularities for bonded and disbonded three-material junctions. ASME J. Appl. Mech. 31, 2979–2997 (1994) · Zbl 0943.74504
[10] Carpinteri, A., Paggi, M.: Analytical study of the singularities arising at multi-material interfaces in 2D linear elastic problems. Eng. Fract. Mech. 74, 59–74 (2007) · doi:10.1016/j.engfracmech.2006.01.030
[11] Inoue, T., Koguchi, H.: Influence of the intermediate material on the order of stress singularity in three-phase bonded structure. Int. J. Solids Struct. 33, 399–417 (1996) · Zbl 0900.73454 · doi:10.1016/0020-7683(95)00040-H
[12] Rao, A.K.: Stress concentrations and singularities at interface corners. Z. Angew. Math. Mech. (ZAMM) 51, 395–406 (1971) · Zbl 0228.73092 · doi:10.1002/zamm.19710510509
[13] Fenner, D.N.: Stress singularities in composite materials with an arbitrarily oriented crack meeting an interface. Int. J. Fract. 12, 705–712 (1976)
[14] Williams, M.L.: Stress singularities resulting from various boundary conditions in angular corners of plates in extension. ASME J. Appl. Mech. 74, 526–528 (1952)
[15] Ma, C.C., Hour, B.L.: Analysis of dissimilar anisotropic wedges subjected to antiplane shear deformation. Int. J. Solids Struct. 25, 1295–1308 (1989) · Zbl 0703.73008 · doi:10.1016/0020-7683(89)90093-0
[16] Ma, C.C., Hour, B.L.: Antiplane problems in composite materials with an inclined crack terminating at a bi-material interface. Int. J. Solids Struct. 26, 1387–1400 (1990) · doi:10.1016/0020-7683(90)90085-A
[17] Pageau, S.S., Joseph, P.F., Biggers, S.B., Jr.: Finite element evaluation of free-edge singular stress fields in anisotropic materials. Int. J. Numer. Methods Eng. 38, 2225–2239 (1995) · Zbl 0847.73066 · doi:10.1002/nme.1620381306
[18] Sinclair, G.B.: On the singular eigenfunctions for plane harmonic problems in composite regions. ASME J. Appl. Mech. 47, 87–92 (1980) · Zbl 0445.73009 · doi:10.1115/1.3153644
[19] Bouwkamp, C.: A note on singularities occurring at sharp edges in electromagnetic diffraction theory. Physica 12, 467 (1946) · Zbl 0063.00574 · doi:10.1016/S0031-8914(46)80061-2
[20] Meixner, J.: Die Kentenbedingung in der Theorie der beugung electromagnetischer Wellen an vollkommen leitenden ebenen Schirmen. Ann. Phys. 6, 1–9 (1949) · Zbl 0034.12501
[21] Meixner, J.: The behavior of electromagnetic fields at edges. IEEE Trans. Antennas Propag. AP-20, 442–446 (1972) · doi:10.1109/TAP.1972.1140243
[22] Jones, D.S.: Diffraction by an edge and by a corner. Q. J. Mech. Appl. Math. 5, 363–378 (1952) · Zbl 0048.21102 · doi:10.1093/qjmam/5.3.363
[23] Poincelot, P.: Précis d’Électromagnétisme Théorique. Dunod, Paris (1963), pp. 84–90
[24] van Bladel, J.: Singular Electromagnetic Fields and Sources. Clarendon Press, Oxford (1991)
[25] Lang, K.C.: Edge condition of a perfectly conducting wedge with its exterior region divided by a resistive sheet. IEEE Trans. Antennas Propag. AP-21, 237–238 (1973) · doi:10.1109/TAP.1973.1140446
[26] Hurd, R.A.: The edge condition in electromagnetics. IEEE Trans. Antennas Propag. AP-24, 70–73 (1976) · doi:10.1109/TAP.1976.1141290
[27] Brooke, G.H., Kharadly, M.M.Z.: Field behavior near anisotropic and multidielectric edges. IEEE Trans. Antennas Propag. AP-25, 571–575 (1977) · doi:10.1109/TAP.1977.1141646
[28] Back Andersen, J.: Field behavior near a dielectric wedge. IEEE Trans. Antennas Propag. AP-26, 598–602 (1978) · doi:10.1109/TAP.1978.1141899
[29] Carpinteri, A., Paggi, M., Pugno, N.: Numerical evaluation of generalized stress-intensity factors in multi-layered composites. Int. J. Solids Struct. 43, 627–641 (2006) · Zbl 1119.74388 · doi:10.1016/j.ijsolstr.2005.06.009
[30] Graglia, R.D., Lombardi, G.: Singular higher order complete vector bases for finite methods. IEEE Trans. Antennas Propag. 52, 1672–1685 (2004) · Zbl 1368.78136 · doi:10.1109/TAP.2004.831292
[31] Olyslager, F.: The behavior of electromagnetic fields at edges in bi-isotropic and bi-anisotropic materials. IEEE Trans. Antennas Propag. 42, 1392–1397 (1994) · doi:10.1109/8.320745
[32] Harrington, R.F.: Time-Harmonic Electromagnetic Fields. McGraw-Hill, New York (1961)
[33] Tellegen, B.D.H.: The gyrator, a new electric network element. Philips Res. Rep. 3, 81–101 (1948)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.