×

Sparse 3D reconstructions in electrical impedance tomography using real data. (English) Zbl 1304.65242

Summary: We present a 3D reconstruction algorithm with sparsity constraints for electrical impedance tomography (EIT). EIT is the inverse problem of determining the distribution of conductivity in the interior of an object from simultaneous measurements of currents and voltages on its boundary. The feasibility of the sparsity reconstruction approach is tested with real data obtained from a new planar EIT device developed at the Institut für Physik, Johannes Gutenberg Universität, Mainz, Germany. The complete electrode model is adapted for the given device to handle incomplete measurements and the inhomogeneities of the conductivity are a priori assumed to be sparse with respect to a certain basis. This prior information is incorporated into a Tikhonov-type functional by including a sparsity-promoting \(\ell^1\)-regularization term. The functional is minimized with an iterative soft shrinkage-type algorithm.

MSC:

65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
92C55 Biomedical imaging and signal processing

References:

[1] DOI: 10.1016/j.cemconres.2009.08.023 · doi:10.1016/j.cemconres.2009.08.023
[2] DOI: 10.1088/0957-0233/7/3/005 · doi:10.1088/0957-0233/7/3/005
[3] DOI: 10.3934/ipi.2007.1.371 · Zbl 1121.65113 · doi:10.3934/ipi.2007.1.371
[4] DOI: 10.1109/TBME.1987.326032 · doi:10.1109/TBME.1987.326032
[5] DOI: 10.1002/ima.1850020203 · doi:10.1002/ima.1850020203
[6] DOI: 10.1088/0266-5611/10/2/008 · Zbl 0805.35149 · doi:10.1088/0266-5611/10/2/008
[7] DOI: 10.1109/42.700740 · doi:10.1109/42.700740
[8] DOI: 10.1088/0266-5611/16/5/321 · Zbl 1044.78513 · doi:10.1088/0266-5611/16/5/321
[9] DOI: 10.1051/cocv:2001121 · Zbl 0989.35136 · doi:10.1051/cocv:2001121
[10] DOI: 10.1088/0266-5611/19/3/308 · Zbl 1034.65043 · doi:10.1088/0266-5611/19/3/308
[11] DOI: 10.1016/j.jcp.2004.11.022 · Zbl 1072.65143 · doi:10.1016/j.jcp.2004.11.022
[12] DOI: 10.1088/0266-5611/22/6/004 · Zbl 1109.65100 · doi:10.1088/0266-5611/22/6/004
[13] Kirsch A, The factorization method for inverse problems (2008)
[14] DOI: 10.1002/cpa.20042 · Zbl 1077.65055 · doi:10.1002/cpa.20042
[15] DOI: 10.1088/0266-5611/23/5/014 · Zbl 1131.65045 · doi:10.1088/0266-5611/23/5/014
[16] DOI: 10.1007/s00211-006-0016-3 · Zbl 1101.65056 · doi:10.1007/s00211-006-0016-3
[17] DOI: 10.1515/JIIP.2008.025 · Zbl 1161.65041 · doi:10.1515/JIIP.2008.025
[18] DOI: 10.1007/s10589-007-9083-3 · Zbl 1179.90326 · doi:10.1007/s10589-007-9083-3
[19] DOI: 10.1109/TSP.2009.2016892 · Zbl 1391.94442 · doi:10.1109/TSP.2009.2016892
[20] DOI: 10.1002/nme.3247 · Zbl 1242.78016 · doi:10.1002/nme.3247
[21] DOI: 10.1016/j.cam.2011.09.035 · Zbl 1251.78008 · doi:10.1016/j.cam.2011.09.035
[22] DOI: 10.1080/17415977.2011.598522 · Zbl 1237.78016 · doi:10.1080/17415977.2011.598522
[23] DOI: 10.1137/0152060 · Zbl 0759.35055 · doi:10.1137/0152060
[24] DOI: 10.1093/imanum/8.1.141 · Zbl 0638.65055 · doi:10.1093/imanum/8.1.141
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.