×

Testing for the bivariate Poisson distribution. (English) Zbl 1304.62043

Summary: This paper studies goodness-of-fit tests for the bivariate Poisson distribution. Specifically, we propose and study several Cramér-von Mises type tests based on the empirical probability generating function. They are consistent against fixed alternatives for adequate choices of the weight function involved in their definition. They are also able to detect local alternatives converging to the null at a certain rate. The bootstrap can be used to consistently estimate the null distribution of the test statistics. A simulation study investigates the goodness of the bootstrap approximation and compares their powers for finite sample sizes. Extensions for testing goodness-of-fit for the multivariate Poisson distribution are also discussed.

MSC:

62F03 Parametric hypothesis testing
62F40 Bootstrap, jackknife and other resampling methods
62F05 Asymptotic properties of parametric tests
62F10 Point estimation

Software:

bivpois
Full Text: DOI

References:

[1] Baringhaus L, Gürtler N, Henze N (2000) Weighted integral test statistics and components of smooth tests of fit. Aust N Z J Stat 42:179-192 · doi:10.1111/1467-842X.00117
[2] Baringhaus L, Henze N (1992) A goodness of fit test for the Poisson distribution based on the empirical generating function. Stat Prob Lett 13:269-274 · Zbl 0741.62043 · doi:10.1016/0167-7152(92)90033-2
[3] Berkhout P, Plug E (2004) A bivariate Poisson count data model using conditional probabilities. Stat Neerlandica 58(3):349-364 · Zbl 1059.62011 · doi:10.1111/j.1467-9574.2004.00126.x
[4] Crockett, NG; McNeil, D. (ed.), A quick test of fit of a bivariate distribution, 185-191 (1979), Amsterdam
[5] Feuerverger A (1989) On the empirical saddlepoint approximation. Biometrika 76:457-464 · Zbl 0674.62019 · doi:10.1093/biomet/76.3.457
[6] Gillings DB (1974) Some further results for bivariate generalizations of the Neyman Type A distribution. Biometrics 30:619-628 · Zbl 0294.62045 · doi:10.2307/2529227
[7] Gregory G (1977) Large sample theory for \[UU\]-statistics and tests of fit. Ann Stat 5:110-123 · Zbl 0371.62033 · doi:10.1214/aos/1176343744
[8] Gürtler N, Henze N (2000) Recent and classical goodness-of-fit tests for the Poisson distribution. J Stat Plan Inference 90:207-225 · Zbl 0958.62043 · doi:10.1016/S0378-3758(00)00114-2
[9] Hamdan MA (1972) Estimation in the truncated bivariate Poisson distribution. Technometrics 14:37-45 · Zbl 0232.62014 · doi:10.1080/00401706.1972.10488881
[10] Ho LL, Singer JM (2001) Generalizad least squares methods for bivariate Poisson regression. Commun Stat Theory Methods 30(2):263-277 · Zbl 1009.62566 · doi:10.1081/STA-100002030
[11] Holgate P (1964) Estimation for the bivariate Poisson distribution. Biometrika 51:241-245 · Zbl 0133.11802 · doi:10.1093/biomet/51.1-2.241
[12] Holgate P (1966) Bivariate generalizations of Neyman’s Type A distribution. Biometrika 53:241-245 · Zbl 0147.19303 · doi:10.1093/biomet/53.1-2.241
[13] Johnson NL, Kotz S, Balakrishnan N (1997) Discrete multivariate distributions. Wiley, New York · Zbl 0868.62048
[14] Karlis D, Ntzoufras I (2005) Bivariate Poisson and diagonal inflated bivariate Poisson regression models in R. J Stat Softw 14(10):1-36
[15] Karlis D, Tsiamyrtzis P (2008) Exact Bayesian modeling for bivariate Poisson data and extensions. Stat Comput 18:27-40 · doi:10.1007/s11222-007-9035-x
[16] Kocherlakota S, Kocherlakota K (1992) Bivariate discrete distributions. Marcel Dekker Inc, New York · Zbl 0794.62002
[17] Kundu S, Majumdar S, Mukherjee K (2000) Central limits theorems revisited. Stat Probab Lett 47:265-275 · Zbl 0963.60016 · doi:10.1016/S0167-7152(99)00164-9
[18] Lehmann EL, Romano JP (2005) Testing statistical hypothesis. Springer, Berlin · Zbl 1076.62018
[19] Loukas S, Kemp CD (1986) The index of dispersion test for the bivariate Poisson distribution. Biometrics 42:941-948 · Zbl 0656.62065 · doi:10.2307/2530708
[20] Meintanis S, Swanepoel J (2007) Bootstrap goodness-of-fit tests with estimated parameters based on empirirical transforms. Stat Probab Lett 77:1004-1013 · Zbl 1116.62052 · doi:10.1016/j.spl.2007.01.014
[21] Papageorgiou H, Loukas S (1988) Conditional even point estimation for bivariate discrete distributions. Commun Stat Theory Methods 17:3403-3412 · Zbl 0696.62096 · doi:10.1080/03610928808829811
[22] Rayner JCW, Best DJ (1995) Smooth tests for the bivariate Poisson distribution. Aust N Z J Stat 37:233-245 · Zbl 0847.62045 · doi:10.1111/j.1467-842X.1995.tb00656.x
[23] Rueda R, Pérez-Abreu V, O’Reilly F (1991) Goodness of fit for the Poisson distribution based on the probability generating function. Commun Stat Theory Methods A20:3093-3110 · Zbl 0800.62093 · doi:10.1080/03610929108830690
[24] Serfling RJ (1980) Approximation theorems of mathematical statistics. Wiley, New York · Zbl 0538.62002 · doi:10.1002/9780470316481
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.