×

The massless string spectrum on \(\mathrm{AdS}_{3}\times S^{3}\) from the supergroup. (English) Zbl 1303.81163

Summary: String theory on \(\mathrm{AdS}_{3} \times S^{3}\) is studied in the hybrid formulation. We give a detailed description of the \(\mathrm{PSL}(2-2)\) supergroup WZW model that underlies the background with pure NS-NS flux, and determine the BRST-cohomology corresponding to the massless string states. The resulting spectrum is shown to match exactly with the expected supergravity answer, including the sectors with small KK momentum on the sphere.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83E50 Supergravity
81R05 Finite-dimensional groups and algebras motivated by physics and their representations

References:

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [SPIRES]. · Zbl 0914.53047
[2] A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS3, Adv. Theor. Math. Phys.2 (1998) 733 [hep-th/9806194] [SPIRES]. · Zbl 1041.81575
[3] D. Kutasov and N. Seiberg, More comments on string theory on AdS3, JHEP04 (1999) 008 [hep-th/9903219] [SPIRES]. · Zbl 0953.81071 · doi:10.1088/1126-6708/1999/04/008
[4] D. Kutasov, F. Larsen and R.G. Leigh, String theory in magnetic monopole backgrounds, Nucl. Phys.B 550 (1999) 183 [hep-th/9812027] [SPIRES]. · Zbl 0947.81078 · doi:10.1016/S0550-3213(99)00144-3
[5] J.M. Maldacena and H. Ooguri, Strings in AdS3and SL(2,R) WZW model. I, J. Math. Phys.42 (2001) 2929 [hep-th/0001053] [SPIRES]. · Zbl 1036.81033 · doi:10.1063/1.1377273
[6] J.M. Maldacena, H. Ooguri and J. Son, Strings in AdS3and the SL(2,R) WZW model. II: Euclidean black hole, J. Math. Phys.42 (2001) 2961 [hep-th/0005183] [SPIRES]. · Zbl 1036.81034 · doi:10.1063/1.1377039
[7] J.M. Maldacena and H. Ooguri, Strings in AdS3and the SL(2,R) WZW model. III: Correlation functions, Phys. Rev.D 65 (2002) 106006 [hep-th/0111180] [SPIRES].
[8] M.R. Gaberdiel and I. Kirsch, Worldsheet correlators in AdS3/CFT2, JHEP04 (2007) 050 [hep-th/0703001] [SPIRES]. · doi:10.1088/1126-6708/2007/04/050
[9] A. Dabholkar and A. Pakman, Exact chiral ring of AdS3/CFT2, Adv. Theor. Math. Phys.13 (2009) 409 [hep-th/0703022] [SPIRES]. · Zbl 1166.81357
[10] A. Pakman and A. Sever, Exact N =4 correlators of AdS3/CFT2, Phys. Lett.B 652 (2007) 60 [arXiv:0704.3040] [SPIRES]. · Zbl 1248.81183 · doi:10.1016/j.physletb.2007.06.041
[11] M. Taylor, Matching of correlators in AdS3/CFT2, JHEP06 (2008) 010 [arXiv:0709.1838] [SPIRES]. · doi:10.1088/1126-6708/2008/06/010
[12] C.A. Cardona and C.A. Núñez, Three-point functions in superstring theory on AdS3 × S3 × T4 , JHEP06 (2009) 009 [arXiv:0903.2001] [SPIRES]. · doi:10.1088/1126-6708/2009/06/009
[13] G. Giribet, A. Pakman and L. Rastelli, Spectral Flow in AdS3/CFT2, JHEP06 (2008) 013 [arXiv:0712.3046] [SPIRES]. · doi:10.1088/1126-6708/2008/06/013
[14] J. de Boer, J. Manschot, K. Papadodimas and E. Verlinde, The chiral ring of AdS3/CFT2and the attractor mechanism, JHEP03 (2009) 030 [arXiv:0809.0507] [SPIRES]. · doi:10.1088/1126-6708/2009/03/030
[15] N. Berkovits, C. Vafa and E. Witten, Conformal field theory of AdS background with Ramond-Ramond flux, JHEP03 (1999) 018 [hep-th/9902098] [SPIRES]. · Zbl 0965.81090 · doi:10.1088/1126-6708/1999/03/018
[16] N. Berkovits, Quantization of the type-II superstring in a curved six-dimensional background, Nucl. Phys.B 565 (2000) 333 [hep-th/9908041] [SPIRES]. · Zbl 0956.81057 · doi:10.1016/S0550-3213(99)00690-2
[17] N. Berkovits, Quantization of the superstring in Ramond-Ramond backgrounds, Class. Quant. Grav.17 (2000) 971 [hep-th/9910251] [SPIRES]. · Zbl 0952.81043 · doi:10.1088/0264-9381/17/5/306
[18] R.R. Metsaev and A.A. Tseytlin, Type IIB superstring action in AdS5 × S5background, Nucl. Phys.B 533 (1998) 109 [hep-th/9805028] [SPIRES]. · Zbl 0956.81063 · doi:10.1016/S0550-3213(98)00570-7
[19] J. Rahmfeld and A. Rajaraman, The GS string action on AdS3 × S3with Ramond-Ramond charge, Phys. Rev.D 60 (1999) 064014 [hep-th/9809164] [SPIRES]. · doi:10.1103/PhysRevD.60.064014
[20] M. Bershadsky, S. Zhukov and A. Vaintrob, PSL(n|n) σ-model as a conformal field theory, Nucl. Phys.B 559 (1999) 205 [hep-th/9902180] [SPIRES]. · Zbl 0957.81064 · doi:10.1016/S0550-3213(99)00378-8
[21] L. Rozansky and H. Saleur, Quantum field theory for the multivariable Alexander-Conway polynomial, Nucl. Phys.B 376 (1992) 461 [SPIRES]. · doi:10.1016/0550-3213(92)90118-U
[22] N. Read and H. Saleur, Exact spectra of conformal supersymmetric nonlinear σ-models in two dimensions, Nucl. Phys.B 613 (2001) 409 [hep-th/0106124] [SPIRES]. · Zbl 0972.81087 · doi:10.1016/S0550-3213(01)00395-9
[23] G. Götz, T. Quella and V. Schomerus, Tensor products of psl(2-2) representations, hep-th/0506072 [SPIRES]. · Zbl 1180.17009
[24] V. Schomerus and H. Saleur, The GL(1-1) WZW model: From supergeometry to logarithmic CFT, Nucl. Phys.B 734 (2006) 221 [hep-th/0510032] [SPIRES]. · Zbl 1192.81185 · doi:10.1016/j.nuclphysb.2005.11.013
[25] G. Götz, T. Quella and V. Schomerus, The WZNW model on PSU(1, 1-2), JHEP03 (2007) 003 [hep-th/0610070] [SPIRES]. · doi:10.1088/1126-6708/2007/03/003
[26] H. Saleur and V. Schomerus, On the SU(2-1) WZNW model and its statistical mechanics applications, Nucl. Phys.B 775 (2007) 312 [hep-th/0611147] [SPIRES]. · Zbl 1119.82014 · doi:10.1016/j.nuclphysb.2007.02.031
[27] J. Troost, Massless particles on supergroups and AdS3 × S3supergravity, JHEP07 (2011) 042 [arXiv:1102.0153] [SPIRES]. · Zbl 1298.81334 · doi:10.1007/JHEP07(2011)042
[28] M.R. Gaberdiel and I. Runkel, From boundary to bulk in logarithmic CFT, arXiv:0707.0388 [SPIRES]. · Zbl 1134.81044
[29] M.R. Gaberdiel, I. Runkel and S. Wood, Fusion rules and boundary conditions in the c = 0 triplet model, J. Phys.A 42 (2009) 325403 [arXiv:0905.0916] [SPIRES]. · Zbl 1179.81145 · doi:10.1088/1751-8113/42/32/325403
[30] Y.M. Zou, Categories of finite-dimensional weight modules over type I classical Lie superalgebras, J. Algebra180 (1996) 459. · Zbl 0843.17001 · doi:10.1006/jabr.1996.0077
[31] J. Germoni, Indecomposable representations of special linear Lie superalgebras, J. Algebra209 (1998) 367. · Zbl 0933.17010 · doi:10.1006/jabr.1998.7520
[32] L. Dolan and E. Witten, Vertex operators for AdS3background with Ramond-Ramond flux, JHEP11 (1999) 003 [hep-th/9910205] [SPIRES]. · Zbl 0957.81050 · doi:10.1088/1126-6708/1999/11/003
[33] S. Deger, A. Kaya, E. Sezgin and P. Sundell, Spectrum of D =6, N = 4b supergravity on AdS3 × S3 , Nucl. Phys.B 536 (1998) 110 [hep-th/9804166] [SPIRES]. · Zbl 0940.83030 · doi:10.1016/S0550-3213(98)00555-0
[34] J. de Boer, Six-dimensional supergravity on S3 × AdS3and 2 d conformal field theory, Nucl. Phys.B 548 (1999) 139 [hep-th/9806104] [SPIRES]. · Zbl 0944.83032 · doi:10.1016/S0550-3213(99)00160-1
[35] V.G. Kac, Lie Superalgebras, Adv. Math.26 (1977) 8 [SPIRES]. · Zbl 0366.17012 · doi:10.1016/0001-8708(77)90017-2
[36] V.G. Kac, Representations of classical Lie superalgebras, in Proceedings of ‘Differential geometrical methods in mathematical physics II’,Berlin (1977) 597 [SPIRES]. · Zbl 0359.17010
[37] M. Scheunert, The theory of Lie superalgebras. An introduction, Lecture notes in Mathematics vol. 716, Springer Germany (1979) [SPIRES] · Zbl 0407.17001
[38] J.E. Humphreys, Representations of semisimple Lie algebras in the BGG Category \(\mathcal{O} \), AMS (2008). · Zbl 1177.17001
[39] T. Quella and V. Schomerus, Free fermion resolution of supergroup WZNW models, JHEP09 (2007) 085 [arXiv:0706.0744] [SPIRES]. · doi:10.1088/1126-6708/2007/09/085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.