×

Multiple blow-up phenomena for the sinh-Poisson equation. (English) Zbl 1303.35088

This paper deals with the study of a semilinear elliptic equation, involving a small positive parameter, in a smooth bounded domain, which contains the origin and is symmetric about it. The blow-up analysis of solutions to this problem is presented; in particular, a family of solutions to this problem is constructed, which blows up at the origin.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
76D05 Navier-Stokes equations for incompressible viscous fluids
35B44 Blow-up in context of PDEs
35J61 Semilinear elliptic equations

References:

[1] Baraket S., Pacard F.: Construction of singular limits for a semilinear elliptic equation in dimension 2. Calc. Var. Partial Differ. Equ. 6(1), 1-38 (1998) · Zbl 0890.35047 · doi:10.1007/s005260050080
[2] Bartolucci D., Pistoia A.: Existence and qualitative properties of concentrating solutions for the sinh-Poisson equation. IMA J. Appl. Math. 72(6), 706-729 (2007) · Zbl 1154.35072 · doi:10.1093/imamat/hxm012
[3] Bartsch T., Pistoia A., Weth T.: N-vortex equilibria for ideal fluids in bounded planar domains and new nodal solutions of the sinh-Poisson and the Lane-Emden-Fowler equations. Commun. Math. Phys. 297(3), 653-686 (2010) · Zbl 1195.35250 · doi:10.1007/s00220-010-1053-4
[4] Chen W, Li C.: Qualitative properties of solutions to some nonlinear elliptic equations in \[{\mathbb{R}^2} \]. Duke Math. J. 71, 427-439 (1993) · Zbl 0923.35055 · doi:10.1215/S0012-7094-93-07117-7
[5] Chow K.W., Tang S.C., Mak C.C.: Another exact solution for two-dimensional, inviscid sinh Poisson vortex arrays. Phys. Fluids 15(8), 2437-2439 (2003) · Zbl 1186.76107 · doi:10.1063/1.1584046
[6] Chow K.W., Ko N.W.M., Leung C.K., Tang S.K.: Inviscid two-dimensional vortex dynamics and a soliton expansion of the sinh Poisson equation. Phys. Fluids 10(5), 1111-1119 (1998) · Zbl 1185.35184 · doi:10.1063/1.869636
[7] Chorin, A.J.: Vorticity and Turbulence, Applied Mathematical Sciences, Vol. 103. Springer, New York, 1994 · Zbl 0795.76002
[8] Chorin, A. J., Marsden, E. J.:A Mathematical Introduction to Fluid mechanics, 2nd edn. Texts in Applied Mathematics, Vol. 4. Springer, New York, 1990 · Zbl 0712.76008
[9] Del Pino M., Dolbeault J., Musso M.: “Bubble-tower” radial solutions in the slightly supercritical Brezis-Nirenberg problem. J. Differ. Equ. 193(2), 280-306 (2003) · Zbl 1140.35413 · doi:10.1016/S0022-0396(03)00151-7
[10] Del Pino, M., Dolbeault, J., Musso, M.: The Brezis-Nirenberg problem near criticality in dimension 3. J. Math. Pures Appl. (9)83(12), 1405-1456 (2004) · Zbl 1130.35040
[11] Del Pino M., Dolbeault J., Musso M.: Multiple bubbling for the exponential nonlinearity in the slightly supercritical case. Commun. Pure Appl. Anal. 5(3), 463-482 (2006) · Zbl 1140.35339 · doi:10.3934/cpaa.2006.5.463
[12] Del Pino M., Esposito P., Musso M.: Nondegeneracy of entire solutions of a singular Liouvillle equation. Proc. Am. Math. Soc. 140(2), 581-588 (2012) · Zbl 1242.35117 · doi:10.1090/S0002-9939-2011-11134-1
[13] Del Pino M., Kowalczyk M., Musso M.: Singular limits in Liouville-type equations. Calc. Var. Partial Differ. Equ. 24(1), 47-81 (2005) · Zbl 1088.35067 · doi:10.1007/s00526-004-0314-5
[14] Del Pino M., Musso M., Pistoia A.: Super-critical boundary bubbling in a semilinear Neumann problem. Ann. Inst. H. Poincar’e Anal. Non Linéaire 22(1), 45-82 (2005) · Zbl 1130.35064 · doi:10.1016/j.anihpc.2004.05.001
[15] Esposito P., Grossi M., Pistoia A.: On the existence of blowing-up solutions for a mean field equation. Ann. IHP Anal. Non Lineaire 22(2), 127-157 (2005) · Zbl 1077.76060 · doi:10.1016/j.anihpc.2004.03.002
[16] Esposito P., Wei J.: Non-simple blow-up solutions for the Neumann two-dimensional sinh-Gordon equation. Calc. Var. Partial Differ. Equ. 34(3), 341-375 (2009) · Zbl 1169.35049 · doi:10.1007/s00526-008-0187-0
[17] Eyink G. L., Spohn H.: Negative temperature states and large-scale, long-lived vortices in two dimensional turbulence. J. Stat. Phys. 70(3/4), 833-886 (1993) · Zbl 0945.82568
[18] Ge Y., Jing R., Pacard F.: Bubble towers for supercritical semilinear elliptic equations. J. Funct. Anal. 221(2), 251-302 (2005) · Zbl 1129.35379 · doi:10.1016/j.jfa.2004.09.011
[19] Ge Y., Musso M., Pistoia A.: Sign changing tower of bubbles for an elliptic problem at the critical exponent in pierced non-symmetric domains. Commun. Partial Differ. Equ. 35(8), 1419-1457 (2010) · Zbl 1205.35096 · doi:10.1080/03605302.2010.490286
[20] Gladiali F., Grossi M.: On the spectrum of a nonlinear planar problem. Ann. IHP Anal. Non Lineaire 26, 191-222 (2009) · Zbl 1166.35028 · doi:10.1016/j.anihpc.2007.10.004
[21] Grossi, M., Grumiau, C., Pacella, A.: Lane-Emden problems with large exponents and singular Liouville equations (2012) (preprint) · Zbl 1292.35109
[22] Jost J., Wang G., Ye D., Zhou C.: The blowup analysis of solutions to the elliptic sinh-Gordon equation. Calc. Var. Partial Differ. Equ. 31(2), 263-276 (2008) · Zbl 1137.35061 · doi:10.1007/s00526-007-0116-7
[23] Joyce G.R., Montgomery D.: Negative temperature states for a two dimensional guiding center plasma. J. Plasma Phys. 10, 107-121 (1973) · doi:10.1017/S0022377800007686
[24] Kirchhoff, G.: Vorlesungen ”uber Mathematische Physik. B.G. Teubener, Leipzig, 1877 · Zbl 1166.35028
[25] Li, Y. Y., Shafrir, I.: Blow-up analysis for solutions of \[{-\Delta u=Ve^u}\] in dimension two. Indiana Univ. Math. J. 43, 1255-1270 (1994) · Zbl 0842.35011
[26] Lansky I.M., ONeil T.M., Schecter D.A.: A theory of vortex merger. Phys. Rev. Lett. 79(8), 1479-1482 (1997) · doi:10.1103/PhysRevLett.79.1479
[27] Mallier R., Maslowe S.A.: A row of counter rotating vortices. Phys. Fluids A 5(4), 1074-1075 (1993) · Zbl 0778.76022 · doi:10.1063/1.858622
[28] Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids. Applied Mathematical Sciences, Vol. 96. Springer, New York, 1994 · Zbl 0789.76002
[29] Montgomery D., Joyce G. R.: Statistical mechanics of negative temperature states. Phys. Fluids 17, 1139-1145 (1974) · doi:10.1063/1.1694856
[30] Moser, J.: A sharp form of an inequality by N.Trudinger. Indiana Univ. Math. J. 20, 1077-1092 (1970/71) · Zbl 0213.13001
[31] Musso, M., Pistoia, A.: Tower of bubbles for almost critical problems in general domains. J. Math. Pures Appl. (9)93(1), 1-40 (2010) · Zbl 1183.35143
[32] Musso, M., Pistoia, A.: Sign changing solutions to a nonlinear elliptic problem involving the critical Sobolev exponent in pierced domains. J. Math. Pures Appl. (9) 86(6), 510-528 (2006) · Zbl 1215.35070
[33] Onsager, L.: Statistical hydrodynamics. Nuovo Cimento 6(Suppl.), 279-287 (1949)
[34] Ohtsuka H., Suzuki T.: Mean field equation for the equilibrium turbulence and a related functional inequality. Adv. Differ. Equ. 11(3), 281-304 (2006) · Zbl 1109.26014
[35] Pistoia A., Weth T.: Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem. Ann. Inst. H. Poincar’e Anal. Non Lin’eaire 24(2), 325-340 (2007) · Zbl 1166.35018 · doi:10.1016/j.anihpc.2006.03.002
[36] Prajapat J., Tarantello G.: On a class of elliptic problem in \[{\mathbb{R}^2} \] : symmetry and uniqueness results. Proc. R. Soc. Edinb. Sect. A 131, 967-985 (2001) · Zbl 1009.35018 · doi:10.1017/S0308210500001219
[37] Spruck, J.: The Elliptic Sinh Gordon Equation and the Construction of Toroidal Soap Bubbles. Calculus of Variations and Partial Differential Equations (Trento, 1986). Lecture Notes in Mathematics, Vol. 1340. Springer, Berlin, 275-301, 1988 · Zbl 0697.35044
[38] Trudinger N. S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473-483 (1967) · Zbl 0163.36402
[39] Wente H.: Large solutions of the volume constrained Plateau problem. Arch. Ration. Mech. Anal. 75, 59-77 (1980) · Zbl 0473.49029 · doi:10.1007/BF00284621
[40] Wente H.: Counterexample to a conjecture of H. Hopf. Pac. J. Math. 121, 193-243 (1986) · Zbl 0586.53003 · doi:10.2140/pjm.1986.121.193
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.