×

On the \(K\)-theory of feedback actions on linear systems. (English) Zbl 1302.93070

Summary: A categorical approach to linear control systems is introduced. Feedback actions on linear control systems arise as symmetric monodical category \(S_R\). Stable feedback isomorphisms generalize dynamic enlargement of pairs of matrices. Subcategory of locally Brunovsky linear systems \(B_R\) is studied. We prove that the stable feedback isomorphisms of locally Brunovsky linear systems are characterized by the Grothendieck group \(K_0(B_R)\). Hence a link from linear dynamical systems to algebraic \(K\)-theory is established.

MSC:

93B25 Algebraic methods
19A49 \(K_0\) of other rings
13C60 Module categories and commutative rings
16E20 Grothendieck groups, \(K\)-theory, etc.

References:

[1] Bass, H., Algebraic K-Theory (1968), Benjamin · Zbl 0174.30302
[2] Brewer, J. W.; Bunce, J. W.; VanVleck, F. S., Linear Dynamical Systems over Commutative Rings (1986), Marcel Dekker: Marcel Dekker New York · Zbl 0607.13001
[3] Brewer, J. W.; Klingler, L., Dynamic feedback over commutative rings, Linear Algebra Appl., 98 (1988) · Zbl 0663.93020
[4] Brewer, J. W.; Klingler, L., On feedback invariants for linear dynamical systems, Linear Algebra Appl., 325 (2001) · Zbl 0983.93008
[5] Brunovsky, P. A., A classification of linear controllable systems, Kibernetika, 3 (1970) · Zbl 0199.48202
[6] Carriegos, M. V., Enumeration of classes of linear systems via equations and via partitions in a ordered abelian monoid, Linear Algebra Appl., 438 (2013) · Zbl 1256.93036
[7] Casti, J. L., Linear Dynamical Systems (1987), Academic Press · Zbl 0652.93001
[8] Hautus, M. I.J.; Sontag, E. D., New results on pole-shifting for parametrized families of systems, J. Pure Appl. Algebra, 40 (1986) · Zbl 0665.93018
[9] Hermida-Alonso, J. A.; Trobajo, M. T., The dynamic feedback equivalence over principal ideal domains, Linear Algebra Appl., 368 (2003) · Zbl 1130.93362
[10] Hermida-Alonso, J. A.; López-Cabeceira, M. M.; Trobajo, M. T., When are dynamic and static feedback equivalent?, Linear Algebra Appl., 405 (2005) · Zbl 1099.93014
[11] Kalman, R. E., Kronecker invariants and feedback, (Ordinary Differential Equations (1972), Academic), 459-471 · Zbl 0308.93008
[12] Mac Lane, S., Categories for the Working Mathematician (1971), Springer: Springer New York · Zbl 0232.18001
[13] Rosemberg, J., Algebraic \(K\)-Theory and Its Applications (1994) · Zbl 0801.19001
[14] Vasconcelos, W. V.; Weibel, C. A., Bcs rings, J. Pure Appl. Algebra, 52, 173-185 (1988) · Zbl 0658.13004
[15] Weibel, C. A., The \(K\)-book, an introduction to algebraic \(K\)-theory, \(β\)-edition (2013/02/23) · Zbl 1273.19001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.