×

New three-term conjugate gradient method with guaranteed global convergence. (English) Zbl 1302.90212

Summary: The conjugate gradient method is one of the most effective methods to solve the unconstrained optimization problems. In this paper, we develop a new three-term conjugate gradient (TTCG) method by applying the Powell symmetrical technique to the Hestenes-Stiefel method. The proposed method satisfies both the sufficient descent property and the conjugacy condition \(d^T_k y_{k-1}\), which do not rely on any line search. Under the standard Wolfe line search, the global convergence of the proposed method is also established. The numerical results also show that the proposed method is very effective and interesting by comparing with other TTCG methods using a classical set of test problems.

MSC:

90C30 Nonlinear programming
65K05 Numerical mathematical programming methods
Full Text: DOI

References:

[1] Andrei N., Adv. Model. Opt 10 pp 147– (2008)
[2] DOI: 10.1016/j.cam.2012.10.002 · Zbl 1258.65056 · doi:10.1016/j.cam.2012.10.002
[3] DOI: 10.1016/j.amc.2012.11.097 · Zbl 1274.90372 · doi:10.1016/j.amc.2012.11.097
[4] Beale E.M.L., Numerical Methods for Nonlinear Optimization pp 39– (1972)
[5] DOI: 10.1145/200979.201043 · Zbl 0886.65058 · doi:10.1145/200979.201043
[6] DOI: 10.1007/BF02880382 · Zbl 0958.65074 · doi:10.1007/BF02880382
[7] DOI: 10.1137/S1052623497318992 · Zbl 0957.65061 · doi:10.1137/S1052623497318992
[8] DOI: 10.1007/s101070100263 · Zbl 1049.90004 · doi:10.1007/s101070100263
[9] Fletcher R., Practical Methods of Optimization Vol. 1: Unconstrained Optimization (1987) · Zbl 0905.65002
[10] DOI: 10.1093/comjnl/7.2.149 · Zbl 0132.11701 · doi:10.1093/comjnl/7.2.149
[11] DOI: 10.1137/030601880 · Zbl 1093.90085 · doi:10.1137/030601880
[12] Hager W.W., Pacific J. Optim 2 pp 35– (2006)
[13] DOI: 10.1145/355666.355673 · Zbl 0319.65042 · doi:10.1145/355666.355673
[14] DOI: 10.6028/jres.049.044 · Zbl 0048.09901 · doi:10.6028/jres.049.044
[15] DOI: 10.1007/BF00940464 · Zbl 0702.90077 · doi:10.1007/BF00940464
[16] DOI: 10.1007/BF00933447 · Zbl 0348.65061 · doi:10.1007/BF00933447
[17] DOI: 10.1016/0041-5553(69)90035-4 · Zbl 0229.49023 · doi:10.1016/0041-5553(69)90035-4
[18] Polak E., Rev Francaise informat Recherche Operatinelle 3e Annee 16 pp 35– (1969)
[19] DOI: 10.1016/B978-0-12-597050-1.50006-3 · doi:10.1016/B978-0-12-597050-1.50006-3
[20] DOI: 10.1287/moor.3.3.244 · Zbl 0399.90077 · doi:10.1287/moor.3.3.244
[21] DOI: 10.1137/1011036 · Zbl 0177.20603 · doi:10.1137/1011036
[22] DOI: 10.1093/imanum/drl016 · Zbl 1106.65056 · doi:10.1093/imanum/drl016
[23] DOI: 10.1080/10556780701223293 · Zbl 1220.90094 · doi:10.1080/10556780701223293
[24] Zoutendijk G., Integer and Nonlinear Programming pp 37– (1970) · Zbl 0228.90034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.