×

On the parameterization of rational ringed surfaces and rational canal surfaces. (English) Zbl 1302.65047

Summary: Ringed surfaces and canal surfaces are surfaces that contain a one-parameter family of circles. Ringed surfaces can be described by a radius function, a directrix curve and vector field along the directrix curve, which specifies the normals of the planes that contain the circles. In particular, the class of ringed surfaces includes canal surfaces, which can be obtained as the envelopes of a one-parameter family of spheres. Consequently, canal surfaces can be described by a spine curve and a radius function. We present parameterization algorithms for rational ringed surfaces and rational canal surfaces. It is shown that these algorithms may generate any rational parameterization of a ringed (or canal) surface with the property that one family of parameter lines consists of circles. These algorithms are used to obtain rational parameterizations for Darboux cyclides and to construct blends between pairs of canal surfaces and pairs of ringed surfaces.

MSC:

65D17 Computer-aided design (modeling of curves and surfaces)
53A05 Surfaces in Euclidean and related spaces
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
Full Text: DOI

References:

[1] Arrondo E., Sendra J., Sendra J.R.: Parametric generalized offsets to hypersurfaces. J. Symbolic Comput. 23, 267-285 (1997) · Zbl 0878.68134 · doi:10.1006/jsco.1996.0088
[2] Bastl B., Jüttler B., Lávička M., Schulz T.: Blends of canal surfaces from polyhedral medial surface transform representations. Comput. Aided Des. 43(11), 1477-1484 (2011) · doi:10.1016/j.cad.2011.08.014
[3] Blum, R.: Circles on Surfaces in the Euclidean 3-Space. In: Geometry and Differential Geometry, vol. 792 of Lecture Notes in Mathematics, pp. 213-221. Springer, Berlin, Heidelberg (1980) · Zbl 0996.65018
[4] Bobenko A., Huhnen-Venedey E.: Curvature line parametrized surfaces and orthogonal coordinate systems: discretization with Dupin cyclides. Geom. Dedicata. 159(1), 207-237 (2012) · Zbl 1404.53013 · doi:10.1007/s10711-011-9653-5
[5] Cho H.Ch., Choi H.I., Kwon S.-H., Lee D.S., Wee N.-S.: Clifford algebra, Lorentzian geometry and rational parametrization of canal surfaces. Comput. Aided Geom. Des. 21, 327-339 (2004) · Zbl 1069.15500 · doi:10.1016/j.cagd.2003.11.001
[6] Choi, H.I., Lee, D.S.: Rational Parametrization of Canal Surface by 4-Dimensional Minkowski Pythagorean Hodograph Curves. In: Proceedings of the Geometric Modeling and Processing 2000, GMP ’00, pp. 301-309. Washington, DC, USA. IEEE Computer Society (2000) · Zbl 0970.53004
[7] Coolidge J.L.: A Treatise on the Circle and Sphere. Clarendon Press, Oxford (1916) · JFM 46.0921.02
[8] Darboux J.G.: Sur le contact des courbes et des surfaces. Bull. Sci. Math. 2(4), 348-384 (1880) · JFM 12.0590.01
[9] Dohm M., Zube S.: The implicit equation of a canal surface. J. Symb. Comput. 44, 111-130 (2009) · Zbl 1152.14311 · doi:10.1016/j.jsc.2008.06.001
[10] Farin, G., Hoschek, J., Kim, M.-S. (eds): Handbook of Comput Aided Geom D. Elsevier, Amsterdam (2002) · Zbl 1003.68179
[11] Hartmann E.: Gn-continuous connections between normal ringed surfaces. Comput. Aided Geom. Des. 18(8), 751-770 (2001) · Zbl 0983.68220 · doi:10.1016/S0167-8396(01)00065-6
[12] Heo H.-S., Hong S.J., Seong J.-K., Kim M.-S., Elber G.: The intersection of two ringed surfaces and some related problems. Graph. Models 63, 228-244 (2001) · Zbl 1002.68185 · doi:10.1006/gmod.2001.0553
[13] Johnstone J.K.: A new intersection algorithm for cyclides and swept surfaces using circle decomposition. Comput. Aided Geom. Des. 10(1), 1-24 (1993) · Zbl 0767.65004 · doi:10.1016/0167-8396(93)90049-9
[14] Krasauskas R.: Minimal rational parametrizations of canal surfaces. Computing 79, 281-290 (2007) · Zbl 1112.14317 · doi:10.1007/s00607-006-0204-0
[15] Krasauskas R., Mäurer C.: Studying cyclides with Laguerre geometry. Comput. Aided Geom. Des. 17(2), 101-126 (2000) · Zbl 0939.68128 · doi:10.1016/S0167-8396(99)00008-4
[16] Krasauskas, R., Zube, S.: Bézier-like Parametrizations of Spheres and Cyclides Using Geometric Algebra. In: Guerlebeck, K. (ed) 9th International Conference on Clifford Algebras and their Applications in Mathematical Physics (2011). http://www.mif.vu.lt/ rimask/en/ · Zbl 0767.65004
[17] Landsmann G., Schicho J., Winkler F.: The parametrization of canal surfaces and the decomposition of polynomials into a sum of two squares. J. Symbolic Comput. 32(1-2), 119-132 (2001) · Zbl 1079.12501 · doi:10.1006/jsco.2001.0453
[18] Lávička M., Vršek J.: On the representation of Dupin cyclides in Lie sphere geometry with applications. J. Geometry Graph. 13(2), 145-162 (2009) · Zbl 1187.68643
[19] Lü W., Pottmann H.: Pipe surfaces with rational spine curve are rational. Comput. Aided Geom. Des. 13(7), 621-628 (1996) · Zbl 0900.68410 · doi:10.1016/0167-8396(95)00051-8
[20] Lubbes, N.: Families of circles on surfaces. arXiv:1302.6710 (2013) · Zbl 1328.14047
[21] Martin, R.R.: Principal Patches—a New Class of Surface Patch Based on Differential Geometry. In: Ten Hagen, P.J.W. (ed) Eurographics ’83, Proceedings of the International Conference and Exhibition. Fourth Annual Conference of the European Association for Computer Graphics, pp. 47-55 (1983)
[22] Peternell, M.: Rational Families of Conics and Quadrics. In: The Mathematics of Surfaces, vol. VIII, pp. 369-382. Information Geometers (1998) · Zbl 0959.65034
[23] Peternell M., Pottmann H.: Computing rational parametrizations of canal surfaces. J. Symbolic Comput. 23, 255-266 (1997) · Zbl 0877.68116 · doi:10.1006/jsco.1996.0087
[24] Pottmann H.: Rational curves and surfaces with rational offsets. Comput. Aided Geom. Des. 12(2), 175-192 (1995) · Zbl 0872.65011 · doi:10.1016/0167-8396(94)00008-G
[25] Pottmann H., Peternell M.: Applications of Laguerre geometry in CAGD. Comput. Aided Geom. Des. 15, 165-186 (1998) · Zbl 0996.65018 · doi:10.1016/S0167-8396(97)00023-X
[26] Pottmann H., Shi L., Skopenkov M.: Darboux cyclides and webs from circles. Comput. Aided Geom. Des. 29(1), 77-97 (2012) · Zbl 1244.65026 · doi:10.1016/j.cagd.2011.10.002
[27] Shene C.-K.: Blending two cones with Dupin cyclides. Comput. Aided Geom. Des. 15(7), 643-673 (1998) · Zbl 0905.68151 · doi:10.1016/S0167-8396(97)00029-0
[28] Takeuchi N.: Cyclides. Hokkaido Math. J. 29(1), 119 (2000) · Zbl 0970.53004 · doi:10.14492/hokmj/1350912960
[29] Zhou P., Qian W.-H.: Blending multiple parametric normal ringed surfaces using implicit functional splines and auxiliary spheres. Graph. Models 73(4), 87-96 (2011) · doi:10.1016/j.gmod.2010.12.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.