×

Estimating parameters in delay differential equation models. (English) Zbl 1302.62285

Summary: Delay differential equations (DDEs) are widely used in ecology, physiology and many other areas of applied science. Although the form of the DDE model is usually proposed based on scientific understanding of the dynamic system, parameters in the DDE model are often unknown. Thus it is of great interest to estimate DDE parameters from noisy data. Since the DDE model does not usually have an analytic solution, and the numeric solution requires knowing the history of the dynamic process, the traditional likelihood method cannot be directly applied. We propose a semiparametric method to estimate DDE parameters. The key feature of the semiparametric method is the use of a flexible nonparametric function to represent the dynamic process. The nonparametric function is estimated by maximizing the DDE-defined penalized likelihood function. Simulation studies show that the semiparametric method gives satisfactory estimates of DDE parameters. The semiparametric method is demonstrated by estimating a DDE model from Nicholson’s blowfly population data.

MSC:

62P12 Applications of statistics to environmental and related topics

Software:

fda (R); scaRabee
Full Text: DOI

References:

[1] Bihorel, S. (2011), The scaRabee Package: An R-based Tool for Model Simulation and Optimization in Pharmacometrics.
[2] Bunner, M. J., Popp, M., Meyer, Th., Kittel, A., Ran, U., and Parisi, J. (1996), ”Recovery of Scalar Time-Delay Systems From Time Series,” Physics Letters. A, 211, 345–349. · doi:10.1016/0375-9601(96)00014-X
[3] Burden, R. L., and Douglas, F. J. (2000), Numerical Analysis (7th ed.), Pacific Grove, CA: Brooks/Cole. · Zbl 0985.65001
[4] Calderhead, B., Girolami, M., and Lawrence, N. D. (2009), ”Accelerating Bayesian Inference Over Nonlinear Differential Equations With Gaussian Processes,” Advances in Neural Information Processing Systems, 21, 217–224.
[5] Cangelosi, A. R., and Hooten, M. B. (2009), ”Models for Bounded Systems With Continuous Dynamics,” Biometrics, 65, 850–856. · Zbl 1172.92025 · doi:10.1111/j.1541-0420.2008.01130.x
[6] de Boor, C. (2001), A Practical Guide to Splines, New York: Springer. · Zbl 0987.65015
[7] Ellner, S. P., Kendall, B. E., Wood, S. N., McCauley, E., and Briggs, C. J. (1997), ”Inferring Mechanism From Time-Series Data: Delay-Differential Equations,” Physica D, 110, 182–194. · Zbl 0925.62386 · doi:10.1016/S0167-2789(97)00123-1
[8] Fowler, A. C., and Kember, G. (1993), ”Delay Recognition in Chaotic Time Series,” Physics Letters. A, 175, 402–408. · doi:10.1016/0375-9601(93)90991-8
[9] Gurney, W. S. C., Blythe, S. P., and Nisbet, R. M. (1980), ”Nicholson’s Blowflies Revisited,” Nature, 287, 17–21. · doi:10.1038/287017a0
[10] Hassell, M. P. (1978), The Dynamics of Arthropod Predator-Prey Systems, New York: Princeton University Press. · Zbl 0429.92018
[11] Hastie, T., and Tibshirani, R. (1990), Generalized Linear Models, London: Chapman and Hall. · Zbl 0747.62061
[12] Hutchinson, G. E. (1948), ”Circular Causal Systems in Ecology,” Annals of the New York Academy of Sciences, 50, 221–246. · doi:10.1111/j.1749-6632.1948.tb39854.x
[13] Kaplan, D. T., and Glass, L. (1993), ”Coarse-Grained Embeddings of Time Series: Random Walks, Gaussian Random Process, and Deterministic Chaos,” Physica D, 64, 431–454. · Zbl 0773.58016 · doi:10.1016/0167-2789(93)90054-5
[14] Kendall, B. E., Briggs, C. J., Murdoch, W. W., Turchin, P., Ellner, S. P., McCauley, E., Nisbet, R. M., and Wood, S. N. (1999), ”Why Do Populations Cycle? A Synthesis of Statistical and Mechanistic Modeling Approaches,” Ecology, 80, 1789–1805. · doi:10.1890/0012-9658(1999)080[1789:WDPCAS]2.0.CO;2
[15] Lele, S. R., Dennis, B., and Lutscher, F. (2007), ”Data Cloning: Easy Maximum Likelihood Estimation for Complex Ecological Models Using Bayesian Markov Chain Monte Carlo Methods,” Ecology Letters, 10, 551–563. · doi:10.1111/j.1461-0248.2007.01047.x
[16] Mackey, M. C., and Glass, L. (1977), ”Oscillations and Chaos in Physiological Control Systems,” Science, 197, 287–289. · Zbl 1383.92036 · doi:10.1126/science.267326
[17] May, R. M. (1976), ”Models for Single Populations,” in Theoretical Ecology: Principles and Applications, ed. R. M. May, Oxford: Blackwell Scientific Publications, pp. 4–25.
[18] Nicholson, A. J. (1954a), ”Compensatory Reactions of Populations to Stresses, and Their Evolutionary Significance,” Australian Journal of Zoology, 2, 1–8. · doi:10.1071/ZO9540001
[19] – (1954b), ”An Outline of the Dynamics of Animal Populations,” Australian Journal of Zoology, 2, 9–65. · doi:10.1071/ZO9540009
[20] – (1957), ”The Self-adjustment of Populations to Change,” Cold Spring Harbour Symposia on Quantitative Biology, 22, 153–172. · doi:10.1101/SQB.1957.022.01.017
[21] Ramsay, J. O., and Silverman, B. W. (2005), Functional Data Analysis (2nd ed.), New York: Springer. · Zbl 1079.62006
[22] Readshaw, J. L., and Cuff, W. R. (1980), ”A Model of Nicholson’s Blowfly Cycles and Its Relevance to Predation Theory,” Journal of Animal Ecology, 49 (3), 1005–1010. · doi:10.2307/4241
[23] Wikle, C. K., and Hooten, M. B. (2010), ”A General Science-Based Framework for Dynamical Spatio-Temporal Models,” Test, 19, 417–451. · Zbl 1203.37141 · doi:10.1007/s11749-010-0209-z
[24] Wood, S. N. (2001), ”Partially Specified Ecological Models,” Ecological Monographs, 71, 1–25. · doi:10.1890/0012-9615(2001)071[0001:PSEM]2.0.CO;2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.