×

Boundary Harnack principle and Martin boundary at infinity for subordinate Brownian motions. (English) Zbl 1302.60110

Let \(\phi\) be a complete Bernstein function satisfying
(H1): there exist constants \(0<\delta_1\leq\delta_2<1\) and \(a_1,a_2>0\) such that \(a_1\lambda^{\delta_1}\phi(t) \leq \phi(\lambda t) \leq a_2\lambda^{\delta_2}\phi(t)\) for \(\lambda,t \geq 1\);
(H2): there exist constants \(0<\delta_3\leq\delta_4<1\) and \(a_3,a_4>0\) such that \(a_3\lambda^{\delta_4}\phi(t) \leq \phi(\lambda t) \leq a_4\lambda^{\delta_3}\phi(t)\) for \(\lambda,t \leq 1\).
Let \(X\) be a rotationally invariant Lévy process in \(\mathbb{R}^d\), \(d> 2(\delta_2 \vee \delta_4)\), with characteristic exponent \(\phi(|\xi|^2)\). The authors prove:
For every \(a > 0\), there exists a constant \(C = C(a,\phi)>1\) such that, for any \(r \geq 1\), any open set \(U \subset \bar{B}(0, r)^c\) and any nonnegative function \(u\) on \(\mathbb{R}^d\) which is regular harmonic with respect to \(X\) in \(U\) and vanishes a.e. on \(\bar{B}(0, r)^c \setminus U\), it holds that \[ C^{-1} K_U(x,0) \int_{B(0,ar)} u(z)\,dz \leq u(x) \leq C K_U(x,0) \int_{B(0,ar)} u(z)\,dz, \] for \(x\in U\cap \bar{B}(0,ar)^c\), where \(K_U\) denotes the Poisson kernel of \(X\) in \(U\times \bar{U}^c\).
In particular, the boundary Harnack principle at infinity holds.
The Martin boundary at infinity with respect to \(X\) of any open set \(D\) which is \(\kappa\)-fat at infinity consists of exactly one point \(\partial_\infty\). This point is a minimal Martin boundary point.
These results may be applied for a large class of subordinate Brownian motions.

MSC:

60J45 Probabilistic potential theory
60J25 Continuous-time Markov processes on general state spaces
60J50 Boundary theory for Markov processes

References:

[1] Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. Academic, New York (1968) · Zbl 0169.49204
[2] Bogdan, K.: The boundary Harnack principle for the fractional Laplacian. Stud. Math. 123(1), 43-80 (1997) · Zbl 0870.31009
[3] Bogdan, K.; Byczkowski, T.; Kulczycki, T.; Ryznar, M.; Song, R.; Vondraček, Z., Potential analysis of stable processes and its extensions, No. 1980 (2009), Berlin
[4] Bogdan, K., Kulczycki, T., Kwaśnicki, M.: Estimates and structure of α-harmonic functions. Probab. Theory Relat. Fields 140, 345-381 (2008) · Zbl 1146.31004 · doi:10.1007/s00440-007-0067-0
[5] Bogdan, K., Kumagai, T., Kwa´snicki, M.: Boundary Harnack inequality for Markov processes with jumps. Trans. Am.Math. Soc. (2013). http://www.ams.org/cgi-bin/mstrack/accepted_papers/tran, arXiv:1207.3160 · Zbl 0318.60063
[6] Dynkin, E.B.: Markov Processes, vol. I. Academic, New York (1965) · Zbl 0132.37901 · doi:10.1007/978-3-662-00031-1
[7] Ikeda, N., Watanabe, S.: On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes. J. Math. Kyoto Univ. 2, 79-95 (1962) · Zbl 0118.13401
[8] Kim, P., Mimica, A.: Green function estimates for subordinate Brownian motions: stable and beyond. Trans. Am. Math. Soc. (2013). http://www.ams.org/cgi-bin/mstrack/accepted_papers/tran, arXiv:1208.5112 · Zbl 1327.60165
[9] Kim, P., Song, R., Vondraček, Z.: Boundary Harnack principle for subordinate Brownian motion. Stoch. Process. Appl. 119, 1601-1631 (2009) · Zbl 1166.60046 · doi:10.1016/j.spa.2008.08.003
[10] Kim, P., Song, R., Vondraček, Z.: Potential Theory of Subordinated Brownian Motions Revisited. Stochastic Analysis and Applications to Finance, Essays in Honour of Jia-an Yan. Interdisciplinary Mathematical Sciences, vol. 13, pp. 243-290. World Scientific (2012) · Zbl 0459.60063
[11] Kim, P., Song, R., Vondraček, Z.: Minimal thinness for subordinate Brownian motion in half space. Ann. Inst. Fourier 62(3), 1045-1080 (2012) · Zbl 1273.60096 · doi:10.5802/aif.2716
[12] Kim, P., Song, R., Vondraček, Z.: Uniform boundary Harnack principle for rotationally symmetric Lévy processes in general open sets. Sci. China Math. 55, 2193-2416 (2012) · Zbl 1262.60077 · doi:10.1007/s11425-012-4516-6
[13] Kim, P., Song, R., Vondraček, Z.: Potential theory of subordinate Brownian motions with Gaussian components. Stoch. Process. Appl. 123(3), 764-795 (2013) · Zbl 1266.31007 · doi:10.1016/j.spa.2012.11.007
[14] Kim, P., Song, R., Vondraček, Z.: Global uniform boundary Harnack principle with explicit decay rate and its application. Stoch. Process. Appl. 124, 235-267 (2014) · Zbl 1296.60198 · doi:10.1016/j.spa.2013.07.007
[15] Kunita, H., Watanabe, T.: Markov processes and Martin boundaries I. Ill. J. Math. 9(3), 485-526 (1965) · Zbl 0147.16505
[16] Kwaśnicki, M.: Intrinsic ultracontractivity for stable semigroups on unbounded open sets. Potential Anal. 31, 57-77 (2009) · Zbl 1180.47031 · doi:10.1007/s11118-009-9125-9
[17] Millar, P.W.: First passage distributions of processes with independent increments. Ann. Probab. 3, 215-233 (1975) · Zbl 0318.60063 · doi:10.1214/aop/1176996394
[18] Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999) · Zbl 0973.60001
[19] Schilling, RL; Song, R.; Vondraček, Z., Bernstein functions: theory and applications, No. 37 (2012), Berlin · Zbl 1257.33001
[20] Silverstein, M.L.: Classification of coharmonic and coinvariant functions for a Lévy process. Ann. Probab. 8, 539-575 (1980) · Zbl 0459.60063 · doi:10.1214/aop/1176994726
[21] Song, R., Wu, J.: Boundary Harnack principle for symmetric stable processes. J. Funct. Anal. 168(2), 403-427 (1999) · Zbl 0945.31006 · doi:10.1006/jfan.1999.3470
[22] Sztonyk, P.: On harmonic measure for Lévy processes. Probab. Math. Stat. 20, 383-390 (2000) · Zbl 0991.60067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.