×

Distributional chaos for linear operators. (English) Zbl 1302.47014

A continuous map \(f: X\to X\) on a metric space \(X\) is said to be distributionally chaotic if there exist an uncountable set \(\Gamma\subseteq X\) and \(\varepsilon>0\) such that, for every \(\tau>0\) and \(x,y\in \Gamma\) with \(x\not=y\), we have \[ \underline{\mathrm{dens}} \{n\in\mathbb{N}: d(f^n(x),f^n(y))<\varepsilon\}=0, \;\overline{\mathrm{dens}} \{n\in\mathbb{N}: d(f^n(x),f^n(y))>\tau\}=1, \] where, for a set \(A\subseteq \mathbb{N}\), \(\underline{\mathrm{dens}} (A)\) and \(\overline{\mathrm{dens}} (A)\) denote the lower and upper densities of \(A\), respectively.
If \(X\) is a Fréchet space whose lc-topology is generated by the increasing sequence \((\|\cdot\|_k)_{k\in\mathbb{N}}\) of seminorms and \(T\) is a continuous linear operator on \(X\), a vector \(x\in X\) is said to be a distributionally irregular vector for \(T\) if there exist \(m\in\mathbb{N}\) and \(A, B\subseteq \mathbb{N}\) with \(\overline{\mathrm{dens}} (A)=\overline{\mathrm{dens}} (B)=1\) such that \(\lim_{n\in A}T^nx=0\) and \(\lim_{n\in B}\|T^n x\|_m=\infty\). The operator \(T\) is said to satisfy the Distributional Chaos Criterion (DCC) if there exist sequences \((x_k)\) and \((y_k)\) in \(X\) satisfying the following properties: there exists \(A\subseteq \mathbb{N}\) with \(\overline{\mathrm{dens}} (A)=1\) such that \(\lim_{n\in A}T^n x_k=0\) for all \(k\); \(y_k\in \overline{\text{span}\{x_n:\;n\in \mathbb{N}\}}\), \(\lim_{k\to\infty}y_k=0\), and there exists \(\varepsilon>0\) and an increasing sequence \((N_k)\) in \(\mathbb{N}\) such that \(\text{card}\{1\leq j\leq k: d(T^jy_k, 0)>\varepsilon\}\geq N_k(i-k^{-1})\) for all \(k\).
In the paper under review, the authors characterize distributional chaos for linear operators on Fréchet spaces in terms of the so-called condition (DCC) and also as the existence of distributionally irregular vectors. Precisely, they show that, if \(X\) is a Fréchet space and \(T\) is a continuous linear operator on \(X\), then \(T\) is distributionally chaotic if and only if \(T\) satisfies the (DCC) condition if and only if \(T\) has a distributionally irregular vector. A sufficient condition for the existence of dense uniformly distributionally irregular manifolds is also presented. Moreover, the authors characterize dense distributional chaos for unilateral weighted backward shifts on Fréchet spaces in terms of the existence of a distributionally unbounded orbit and for composition operators on the Fréchet space \(H({\mathbb{D}})\).

MSC:

47A16 Cyclic vectors, hypercyclic and chaotic operators
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
47B33 Linear composition operators
47B37 Linear operators on special spaces (weighted shifts, operators on sequence spaces, etc.)
46A04 Locally convex Fréchet spaces and (DF)-spaces
Full Text: DOI

References:

[1] Bayart, F.; Grivaux, S., Hypercyclicity and unimodular point spectrum, J. Funct. Anal., 226, 2, 281-300 (2005) · Zbl 1089.47008
[2] Bayart, F.; Grivaux, S., Frequently hypercyclic operators, Trans. Amer. Math. Soc., 358, 11, 5083-5117 (2006) · Zbl 1115.47005
[3] Bayart, F.; Grivaux, S., Invariant Gaussian measures for operators on Banach spaces and linear dynamics, Proc. London Math. Soc. (3), 94, 1, 181-210 (2007) · Zbl 1115.47006
[4] Bayart, F.; Matheron, É., Dynamics of Linear Operators (2009), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1187.47001
[5] Bayart, F.; Ruzsa, I., Difference sets and frequently hypercyclic weighted shifts, preprint · Zbl 1355.37035
[6] Beauzamy, B., Introduction to Operator Theory and Invariant Subspaces (1988), North-Holland: North-Holland Amsterdam · Zbl 0663.47002
[7] Bermúdez, T.; Bonilla, A.; Martínez-Giménez, F.; Peris, A., Li-Yorke and distributionally chaotic operators, J. Math. Anal. Appl., 373, 1, 83-93 (2011) · Zbl 1214.47012
[9] Bonilla, A.; Grosse-Erdmann, K.-G., Frequently hypercyclic operators and vectors, Ergodic Theory Dynam. Systems. Ergodic Theory Dynam. Systems, Ergodic Theory Dynam. Systems, 29, 6, 1993-1994 (2009), (Erratum) · Zbl 1119.47011
[10] El-Fallah, O.; Ransford, T., Peripheral point spectrum and growth of powers of operators, J. Operator Theory, 52, 1, 89-101 (2004) · Zbl 1104.47005
[11] Godefroy, G.; Shapiro, J. H., Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal., 98, 229-269 (1991) · Zbl 0732.47016
[12] Grosse-Erdmann, K.-G.; Peris Manguillot, A., Linear Chaos (2011), Springer: Springer London · Zbl 1246.47004
[13] Hou, B.; Cui, P.; Cao, Y., Chaos for Cowen-Douglas operators, Proc. Amer. Math. Soc., 138, 3, 929-936 (2010) · Zbl 1192.47029
[14] Hou, B.; Tian, G.; Shi, L., Some dynamical properties for linear operators, Illinois J. Math., 53, 3, 857-864 (2009) · Zbl 1222.47042
[15] Hou, B.; Tian, G.; Zhu, S., Approximation of chaotic operators, J. Operator Theory, 67, 2, 469-493 (2012) · Zbl 1261.47016
[16] Li, T. Y.; Yorke, J. A., Period three implies chaos, Amer. Math. Monthly, 82, 10, 985-992 (1975) · Zbl 0351.92021
[17] Martínez-Giménez, F.; Oprocha, P.; Peris, A., Distributional chaos for backward shifts, J. Math. Anal. Appl., 351, 2, 607-615 (2009) · Zbl 1157.47008
[18] Martínez-Giménez, F.; Oprocha, P.; Peris, A., Distributional chaos for operators with full scrambled sets, Math. Z., 274, 603-612 (2013) · Zbl 1279.47017
[19] Müller, V.; Vrsovsky, J., Orbits of linear operators tending to infinity, Rocky Mountain J. Math., 39, 1, 219-230 (2009) · Zbl 1162.47001
[20] Nikolskii, N. K., Spectral synthesis for a shift operator and zeros in certain classes of analytic functions smooth up to the boundary, Soviet Math. Dokl., 11, 206-209 (1970) · Zbl 0227.47026
[21] Oprocha, P., A quantum harmonic oscillator and strong chaos, J. Phys. A, 39, 47, 14559-14565 (2006) · Zbl 1107.81026
[22] Oprocha, P., Distributional chaos revisited, Trans. Amer. Math. Soc., 361, 9, 4901-4925 (2009) · Zbl 1179.37017
[23] Schweizer, B.; Smítal, J., Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc., 344, 2, 737-754 (1994) · Zbl 0812.58062
[24] Tian, G.; Hou, B., Some remarks on distributional chaos for linear operators, Commun. Math. Res., 27, 4, 307-314 (2011) · Zbl 1265.54138
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.