×

Simple Neumann eigenvalues for the Laplace operator in a domain with a small hole. (English) Zbl 1302.35272

Summary: Let \(\mathbb A(\epsilon)\) be the annular domain obtained by removing from a bounded open domain \(\mathbb I^o\) of \(\mathbb R^n\) a small cavity of size \(\epsilon>0\). Then we assume that for some natural index \(l,\lambda_l[\mathbb I^o]>0\) is a simple Neumann eigenvalue of \(-\Delta\) in \(\mathbb I^o\), and we show that there exists a real valued real analytic function \(\hat\lambda_l(\cdot,\cdot)\) defined in an open neighborhood of \((0,0)\) in \(\mathbb R^2\) such that the \(l\)th Neumann eigenvalue \(\lambda_l[\mathbb A(\epsilon)]\) of \(-\Delta\) in \(\mathbb A(\epsilon)\) equals \(\hat\lambda_l(\epsilon,\kappa_n\epsilon\log\epsilon)\) and such that \(\hat\lambda_l(0,0)=\lambda_l[\mathbb I^o]\). Here, \(\kappa_n=1\) if \(n\) is even and \(\kappa_n=0\) if \(n\) is odd. Thus in particular, we show that if \(n\) is even \(\lambda_l[\mathbb A(\epsilon)]\) can be expanded into a convergent double series of powers of \(\epsilon\) and \(\epsilon\log\epsilon\) and that if \(n\) is odd \(\lambda_l[\mathbb A(\epsilon)]\) can be expanded into a convergent series of powers of \(\epsilon\). Then related statements have been proved for corresponding eigenfunctions.

MSC:

35P15 Estimates of eigenvalues in context of PDEs
31B10 Integral representations, integral operators, integral equations methods in higher dimensions
45F15 Systems of singular linear integral equations
47H30 Particular nonlinear operators (superposition, Hammerstein, Nemytskiĭ, Uryson, etc.)
Full Text: DOI

References:

[1] Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Commun. Pure Appl. Math. 12, 623–727 (1959) · Zbl 0093.10401 · doi:10.1002/cpa.3160120405
[2] Ammari, H., Kang, H., Lim, M., Zribi, H.: Layer potential techniques in spectral analysis. Part I: Complete asymptotic expansions for eigenvalues of the Laplacian in domains with small inclusions. Trans. Am. Math. Soc. 362, 2901–2922 (2010) · Zbl 1195.35234 · doi:10.1090/S0002-9947-10-04695-7
[3] Cartan, H.: Cours de Calcul Différentiel. Hermann, Paris (1967)
[4] Colton, D., Kress, R.: Integral Equation Methods in Scattering Theory. Krieger, Malabar (1992) · Zbl 0760.35053
[5] Dalla Riva, M., Lanza de Cristoforis, M.: A perturbation result for the layer potentials of general second order differential operators with constant coefficients. J. Appl. Funct. Anal. 5, 10–30 (2010) · Zbl 1200.35111
[6] Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology. Physical Origins and Classical Methods, vol. 1. Springer, Berlin, (1990). With the collaboration of Philippe Bénilan, Michel Cessenat, André Gervat, Alain Kavenoky and Hélène Lanchon. Translated from the French by Ian N. Sneddon. With a preface by Jean Teillac · Zbl 0683.35001
[7] Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985) · Zbl 0559.47040
[8] Folland, G.B.: Introduction to Partial Differential Equations, 2nd edn. Princeton University Press, Princeton (1995) · Zbl 0841.35001
[9] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983) · Zbl 0562.35001
[10] Hille, E., Phillips, R.S.: Functional Analysis and Semigroups. Amer. Math. Soc. Colloq. Publ., vol. 31 (1957) · Zbl 0078.10004
[11] Gohberg, I.C., Sigal, E.I.: An operator generalization of the logarithmic residue theorem and Rouché’s theorem. Mat. Sb. 84, 607–642 (1971)
[12] Lamberti, P.D., Lanza de Cristoforis, M.: Analyticity results for the eigenvalues of compact selfadjoint operators. Int. J. Differ. Equ. Appl. 3, 427–438 (2001) · Zbl 1058.47014
[13] Lamberti, P.D., Lanza de Cristoforis, M.: A real analyticity result for symmetric functions of the eigenvalues of a domain dependent Dirichlet problem for the Laplace operator. J. Nonlinear Convex Anal. 5, 19–42 (2004) · Zbl 1059.35090
[14] Lanza de Cristoforis, M.: Asymptotic behavior of the solutions of a nonlinear Robin problem for the Laplace operator in a domain with a small hole: a functional analytic approach. Complex Var. Elliptic Equ. 52, 945–977 (2007) · Zbl 1143.35057 · doi:10.1080/17476930701485630
[15] Lanza de Cristoforis, M.: Properties and Pathologies of the composition and inversion operators in Schauder spaces. Rend. Accad. Naz. Sci. XL 15, 93–109 (1991) · Zbl 0829.47059
[16] Lanza de Cristoforis, M., Rossi, L.: Real analytic dependence of simple and double layer potentials for the Helmholtz equation upon perturbation of the support and of the density. In: Kilbas, A.A., Rogosin, S.V. (eds.) Analytic Methods of Analysis and Differential Equations, AMADE 2006, pp. 193–220. Cambridge Scientific Publishers, Cambridge (2008)
[17] Lanza de Cristoforis, M., Rossi, L.: Real analytic dependence of simple and double layer potentials upon perturbation of the support and of the density. J. Integral Equ. Appl. 16, 137–174 (2004) · Zbl 1094.31001 · doi:10.1216/jiea/1181075272
[18] Lebedev, N.N.: Special Functions and Their Applications. Dover, New York (1972). Revised edition, translated from the Russian and edited by Richard A. Silverman. Unabridged and corrected republication · Zbl 0271.33001
[19] Maz’ya, V.G., Nazarov, S.A., Plamenewskii, B.A.: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, I, II. Oper. Theory Adv. Appl., vols. 111, 112. Birkhäuser, Basel (2000) (translation of the original in German published by Akademie Verlag 1991)
[20] Miranda, C.: Partial Differential Equations of Elliptic Type, 2nd edn. Springer, Berlin (1970) · Zbl 0198.14101
[21] Ozawa, S.: Spectra of domains with small spherical Neumann boundary. Proc. Jpn. Acad., Ser. A, Math. Sci. 58(5), 190–192 (1982) · Zbl 0526.35058 · doi:10.3792/pjaa.58.190
[22] Prodi, G., Ambrosetti, A.: Analisi non lineare. Editrice Tecnico Scientifica, Pisa (1973) · Zbl 0352.47001
[23] Rauch, J., Taylor, M.: Potential and scattering theory on wildly perturbed domains. J. Funct. Anal. 18, 27–59 (1975) · Zbl 0293.35056 · doi:10.1016/0022-1236(75)90028-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.