×

Straightforward approximation of the translating and pulsating free surface Green function. (English) Zbl 1302.31010

Summary: The translating and pulsating free surface Green function represents the velocity potential of a three-dimensional free surface source advancing in waves. This function involves singular wave integral, which is troublesome in numerical computation. In the present study, a regular wave integral approach is developed for the discretisation of the singular wave integral in a whole space harmonic function expansion, which permits the free surface wave produced by the fluid motion to be decomposed by plane regular propagation waves. This approximation gives rise to a simple and straightforward evaluation of the Green function. The algorithm is validated from comparisons between present numerical results and existing numerical data.

MSC:

31B10 Integral representations, integral operators, integral equations methods in higher dimensions
35Q35 PDEs in connection with fluid mechanics
76B07 Free-surface potential flows for incompressible inviscid fluids
76B20 Ship waves
Full Text: DOI

References:

[1] M. Abramowitz, <em>Handbook of Mathematical Functions</em>,, National Bureau of Standards Mathematics Series 55 (1964) · Zbl 0171.38503 · doi:10.1119/1.1972842
[2] N. F. Bondarenko, Laboratory and theoretical models of a plane periodic flow,, Izv. Atmos. Oceanic Phys., 15, 711 (1979)
[3] M. Bessho, On the fundamental singularity in a theory of motions in a seaway,, Memories of the Defense Academy Japan, 17, 95 (1977)
[4] J. G. Charney, Multiple flow equilibria in the atmosphere and blocking,, J. Atmos. Sci., 36, 1205 (1979) · doi:10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2
[5] Z. -M. Chen, Secondary fluid flows driven electromagnetically in a two-dimensional extended duct,, Proc. R. Soc. Lond. Ser. A, 461, 1659 (2005) · Zbl 1139.76316 · doi:10.1098/rspa.2005.1454
[6] Z. -M. Chen, A vortex based panel method for potential flow simulation around a hydrofoil,, J. Fluids Struct., 28, 378 (2012) · doi:10.1016/j.jfluidstructs.2011.10.003
[7] Z. -M. Chen, Harmonic function expansion for translating Green functions and dissipative free-surface waves,, Wave Motion, 50, 282 (2013) · Zbl 1360.74073 · doi:10.1016/j.wavemoti.2012.09.005
[8] Z. -M. Chen, Regular wave integral approach to the prediction of hydrodynamic performance of submerged spheroid,, Wave Motion, 51, 193 (2014) · Zbl 1456.76016 · doi:10.1016/j.wavemoti.2013.06.005
[9] G. Dagan, Free-surface flow past oscillating singularities at resonant frequency,, J. Fluid Mech., 120, 139 (1982) · Zbl 0492.76030 · doi:10.1017/S0022112082002705
[10] L. K. Forbes, An algorithm for 3-dimensional free-surface problems in hydrodynamics,, J. Comput. Phys., 82, 330 (1989) · Zbl 0667.76028 · doi:10.1016/0021-9991(89)90052-1
[11] J. Grue, Wave radiation and wave diffraction from a submerged body in a uniform current,, J. Fluid Mech., 151, 257 (1985) · Zbl 0562.76022 · doi:10.1017/S0022112085000957
[12] M. D. Haskind, On wave motion of a heavy fluid,, Prikl. Mat. Mekh., 18, 15 (1954) · Zbl 0056.20307
[13] T. H. Havelock, Wave resistance,, Proc. R. Soc. Lond. Ser. A, 118, 24 (1928) · JFM 54.0896.01 · doi:10.1098/rspa.1928.0033
[14] T. H. Havelock, The theory of wave resistance,, Proc. R. Soc. Lond. Ser. A, 138, 339 (1932) · JFM 58.0882.03 · doi:10.1098/rspa.1932.0188
[15] A. J. Hess, Calculation of non-lifting potential flow about arbitrary three-dimensional bodies,, J. Ship Res., 8, 22 (1964)
[16] A. J. Hess, Calculation of potential flow about arbitrary bodies,, Prog. Aeronautical Sci., 8, 1 (1966) · Zbl 0204.25602 · doi:10.1016/0376-0421(67)90003-6
[17] J. L. Hess, <em>Progress in the Solution of the Problem of a Three-Dimensional Body Oscillating in the Presence of a Free Surface</em>,, Final technical report (6764)
[18] R. B. Inglis, Calculation of the velocity potential of a translating, pulsating source,, Transactions of the Royal Institution of Naval Architects, 123, 163 (1980)
[19] H. Iwashita, The Green function method for ship motions at forward speed,, Ship Tech. Res., 39, 3 (1992)
[20] Y. Liu, On the solution near the critical frequency for an oscillating and translating body in or near a free surface,, J. Fluid Mech., 254, 251 (1993) · Zbl 0781.76007 · doi:10.1017/S0022112093002113
[21] A. Mo, On radiated and scattered waves from a submerged elliptic cylinder in a uniform current,, J. Ship Res., 31, 23 (1987)
[22] J. N. Newman, Algorithms for the free-surface Green function,, J. Engng. Math., 19, 57 (1985) · Zbl 0555.76022 · doi:10.1007/BF00055041
[23] J. N. Newman, Evaluation of the wave-resistance Green function: Part 1 - The double integral,, J. Ship Res., 31, 79 (1987)
[24] J. N. Newman, Evaluation of the wave-resistance Green function: Part 2 - the single integral on the centerplane,, J. Ship Res., 31, 145 (1987)
[25] F. Noblesse, Alternative integral representations for the Green function of the theory of ship wave resistance,, J. Engng. Math., 15, 241 (1981) · Zbl 0487.76027 · doi:10.1007/BF00042923
[26] F. Noblesse, The Green function in the theory of radiation and diffraction of regular water waves by a body,, J. Engng. Math., 16, 137 (1982) · Zbl 0492.76025 · doi:10.1007/BF00042551
[27] J. V. Wehausen, Surface waves,, in Fluid Dynamics III, 446 (1960) · Zbl 1339.76009
[28] Y. Zhang, Resonant interaction between a uniform current and an oscillating object,, Appl. Ocean Res., 27, 259 (1995) · doi:10.1016/0141-1187(95)00018-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.